cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A100096 An inverse Chebyshev transform of the Jacobsthal numbers.

Original entry on oeis.org

0, 1, 1, 6, 9, 36, 66, 218, 449, 1332, 2946, 8196, 18954, 50688, 120576, 314586, 761889, 1957092, 4794426, 12194828, 30093854, 76067256, 188595276, 474810276, 1180734234, 2965094536, 7387570516, 18521858088, 46203981924, 115721310552
Offset: 0

Views

Author

Paul Barry, Nov 03 2004

Keywords

Comments

Image of x/(1-x-2*x^2) under the transform g(x)->(1/sqrt(1-4*x^2))*g(x*c(x^2)), where c(x) is the g.f. of the Catalan numbers A000108. This is the inverse of the Chebyshev transform which takes A(x) to ((1-x^2)/(1+x^2))*A(x/(1+x^2)).
Hankel transform is (-1)^n*n. Hankel transform of a(n+1) is A141124. - Paul Barry, Jun 05 2008

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[x*Sqrt[1-4*x^2]*(3*Sqrt[1-4*x^2]+2*x+1)/(2*(4*x^2-1)*(10*x^2+x-2)), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 12 2014 *)

Formula

G.f.: x*sqrt(1-4*x^2)*(3*sqrt(1-4*x^2)+2*x+1)/(2*(4*x^2-1)*(10*x^2+x-2)).
a(n) = Sum_{k=0..floor(n/2)} binomial(n, k)*A001045(n-2*k).
Conjecture: 2*(-n+1)*a(n) +(n+3)*a(n-1) +18*(n-2)*a(n-2) +4*(-n-2)*a(n-3) +40*(-n+3)*a(n-4)=0. - R. J. Mathar, Nov 24 2012
a(n) ~ (5/2)^n / 3. - Vaclav Kotesovec, Feb 12 2014

A141125 Hankel transform of a transform of Fibonacci numbers.

Original entry on oeis.org

1, 4, -4, -16, 16, 64, -64, -256, 256, 1024, -1024, -4096, 4096, 16384, -16384, -65536, 65536, 262144, -262144, -1048576, 1048576, 4194304, -4194304, -16777216, 16777216, 67108864, -67108864, -268435456, 268435456, 1073741824, -1073741824, -4294967296, 4294967296
Offset: 0

Views

Author

Paul Barry, Jun 05 2008

Keywords

Comments

Hankel transform of A100095(n+1).

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,-4},{1,4},33] (* or *) CoefficientList[Series[(1+4x)/(1+4x^2),{x,0,32}],x] (* James C. McMahon, Jul 17 2025 *)

Formula

G.f.: (1+4x)/(1+4x^2).
a(n) = 2^n*(cos(Pi*n/2)+2*sin(Pi*n/2)).
a(n+3) = a(n+2)*a(n+1)/a(n). - Reinhard Zumkeller, Mar 04 2011
E.g.f.: cos(2*x) + 2*sin(2*x). - Stefano Spezia, Jul 18 2025

Extensions

More terms from James C. McMahon, Jul 18 2025

A216972 a(4n+2) = 2, otherwise a(n) = n.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 2, 7, 8, 9, 2, 11, 12, 13, 2, 15, 16, 17, 2, 19, 20, 21, 2, 23, 24, 25, 2, 27, 28, 29, 2, 31, 32, 33, 2, 35, 36, 37, 2, 39, 40, 41, 2, 43, 44, 45, 2, 47, 48, 49, 2, 51, 52, 53, 2, 55, 56, 57, 2, 59, 60, 61, 2, 63, 64, 65, 2, 67, 68, 69, 2
Offset: 0

Views

Author

Paul Curtz, Sep 21 2012

Keywords

Comments

For n>0, a(n) is the denominator of A214282(n)/(-A214283(n+1)):
1/1, 1/2, 1/3, 3/4, 3/5, 1/2, 3/7, 5/8, 5/9, ...
For n>0, a(n) is the denominator of A214283(n)/A214283(n+1):
0/1, 1/2, 2/3, 3/4, 2/5, 1/2, 4/7, 5/8, 4/9, ...
a(n), first and second differences:
0, 1, 2, 3, 4, 5, 2, 7, 8, 9, 2, 11, 12, ...
1, 1, 1, 1, 1, -3, 5, 1, 1, -7, 9, 1, 1, ...
0, 0, 0, 0, -4, 8, -4, 0, -8, 16, -8, 0, -12, ...

Crossrefs

Programs

  • Magma
    [n mod 4 eq 2 select 2 else n: n in [0..70]]; // Bruno Berselli, Sep 26 2012
    
  • Mathematica
    a[n_] := If[Mod[n, 4] == 2, 2, n]; Table[a[n], {n, 0, 81}] (* Jean-François Alcover, Sep 25 2012 *)
    LinearRecurrence[{0,0,0,2,0,0,0,-1},{0,1,2,3,4,5,2,7},80] (* Harvey P. Dale, Nov 06 2017 *)
  • Maxima
    makelist(expand(2+(4-(1+(-1)^n)*(1-%i^n))*(n-2)/4), n, 0, 70); /* Bruno Berselli, Sep 26 2012 */
    
  • Python
    def A216972(n): return 2 if n&3==2 else n # Chai Wah Wu, Jan 31 2024

Formula

a(n) = 2*a(n-4) - a(n-8).
a(n+4) - a(n) = 4*A152822(n).
a(2n) + a(2n+1) = |A141124(n)|.
a(4n) + a(4n+1) + a(4n+2) + a(4n+3) = 6*A005408(n) = A017593(n).
G.f.: (x+2*x^2+3*x^3+4*x^4+3*x^5-2*x^6+x^7) / (1-2*x^4+x^8). - Jean-François Alcover, Sep 25 2012
a(n) = 2+(4-(1+(-1)^n)*(1-i^n))*(n-2)/4, where i=sqrt(-1). - Bruno Berselli, Sep 26 2012
a(2n) = 2*|A009531(n)|, a(2n+1) = 2n+1. - Bruno Berselli, Sep 27 2012
Showing 1-3 of 3 results.