cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100098 An inverse Chebyshev transform of (1-x)/(1-2x).

Original entry on oeis.org

1, 1, 4, 7, 22, 46, 130, 295, 790, 1870, 4864, 11782, 30148, 73984, 187534, 463687, 1168870, 2902870, 7293640, 18161170, 45541492, 113576596, 284470564, 710118262, 1777323772, 4439253196, 11105933440, 27749232700, 69403169200
Offset: 0

Views

Author

Paul Barry, Nov 04 2004

Keywords

Comments

Image of (1-x)/(1-2*x) under the transform g(x)->(1/sqrt(1-4*x^2))*g(x*c(x^2)), where c(x) is the g.f. of the Catalan numbers A000108. This is the inverse of the Chebyshev transform which takes A(x) to ((1-x^2)/(1+x^2))*A(x/(1+x^2)).
Transform of the Jacobsthal numbers A001045(n+1) under the Riordan array (c(x^2),xc(x^2)). Hankel transform is 3^n. - Paul Barry, Oct 01 2007
Unsigned version of A127361. - Philippe Deléham, Nov 25 2007

Programs

  • Mathematica
    CoefficientList[Series[Sqrt[1-4*x^2]*(Sqrt[1-4*x^2]-6*x+3)/(2*(2-5*x)*(1-4*x^2)), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 08 2014 *)

Formula

G.f.: sqrt(1-4x^2)*(sqrt(1-4x^2)-6x+3)/(2*(2-5x)*(1-4x^2));
a(n) = Sum_{k=0..floor(n/2)} binomial(n, k)*(2^(n-2k) + 0^(n-2k))/2.
From Paul Barry, Oct 01 2007: (Start)
G.f.: (1+2x+3*sqrt(1-4x^2))/(4-2x-20x^2);
a(n) = Sum_{k=0..floor((n+1)/2)} (C(n,k) - C(n,k-1))*A001045(n-2k+1). (End)
Conjecture: 2*n*a(n) + (-5*n+4)*a(n-1) + 2*(-4*n+3)*a(n-2) + 20*(n-2)*a(n-3) = 0. - R. J. Mathar, Nov 22 2012
a(n) ~ 5^n / 2^(n+1). - Vaclav Kotesovec, Feb 08 2014