cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A127361 a(n) = Sum_{k=0..n} binomial(n, floor(k/2))*(-2)^(n-k).

Original entry on oeis.org

1, -1, 4, -7, 22, -46, 130, -295, 790, -1870, 4864, -11782, 30148, -73984, 187534, -463687, 1168870, -2902870, 7293640, -18161170, 45541492, -113576596, 284470564, -710118262, 1777323772, -4439253196, 11105933440, -27749232700, 69403169200
Offset: 0

Views

Author

Paul Barry, Jan 11 2007

Keywords

Comments

Hankel transform is 3^n. In general, for r >= 0, the sequence given by Sum_{k=0..n} binomial(n, floor(k/2))*(-r)^(n-k) has Hankel transform (r+1)^n. The sequence is the image of the sequence with g.f. (1+x)/(1+2*x) under the Chebyshev mapping g(x) -> (1/sqrt(1-4*x^2)) * g(x*c(x^2)), where c(x) is the g.f. of the Catalan numbers A000108.
Second binomial transform is A026641. - Philippe Deléham, Mar 14 2007
Signed version of A100098. - Philippe Deléham, Nov 25 2007

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!( (1+2*x-Sqrt(1-4*x^2))/(2*Sqrt(1-4*x^2)*(1+x-Sqrt(1-4*x^2))) )); // G. C. Greubel, Feb 17 2019
    
  • Maple
    a:=n->add(binomial(n,floor(k/2))*(-2)^(n-k),k=0..n): seq(a(n),n=0..30); # Muniru A Asiru, Feb 18 2019
  • Mathematica
    CoefficientList[Series[(1/Sqrt[1-4*x^2])*(1+x*(1-Sqrt[1-4*x^2]) / (2*x^2)) /(1+2*x*(1-Sqrt[1-4*x^2])/(2*x^2)), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 13 2014 *)
  • PARI
    my(x='x+O('x^30)); Vec( (1+2*x-sqrt(1-4*x^2))/(2*sqrt(1-4*x^2)*(1+x-sqrt(1-4*x^2))) ) \\ G. C. Greubel, Feb 17 2019
    
  • Sage
    ((1+2*x-sqrt(1-4*x^2))/(2*sqrt(1-4*x^2)*(1+x-sqrt(1-4*x^2))) ).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Feb 17 2019

Formula

G.f.: (1/sqrt(1-4*x^2))(1+x*c(x^2))/(1+2*x*c(x^2)), with c(x) = (1 - sqrt(1-4*x))/(2*x).
a(n) = Sum_{k=0..n} A061554(n,k)*(-2)^k. - Philippe Deléham, Nov 25 2007
a(n) = Sum_{k=0..n} A061554(n,k)*(-2)^k. - Philippe Deléham, Dec 04 2009
Conjecture: 2*n*a(n) + (5*n-4)*a(n-1) - 2*(4*n-3)*a(n-2) - 20*(n-2)*a(n-3) = 0. - R. J. Mathar, Nov 30 2012
a(n) ~ (-1)^n * 5^n / 2^(n+1). - Vaclav Kotesovec, Feb 13 2014

Extensions

More terms from Vincenzo Librandi, Feb 15 2014

A112657 A Motzkin transform of Jacobsthal numbers.

Original entry on oeis.org

1, 2, 7, 23, 79, 272, 943, 3278, 11419, 39830, 139057, 485795, 1697905, 5936348, 20760271, 72615143, 254028355, 888758030, 3109714117, 10881403229, 38077702909, 133251869648, 466325356273, 1631981113112, 5711490384901
Offset: 0

Views

Author

Paul Barry, Jan 11 2006

Keywords

Comments

Binomial transform of A100098.
Inverse binomial transform of A007854. The Hankel transform of this sequence is 3^n (see A000244). - Philippe Deléham, Nov 25 2007

Crossrefs

Formula

a(n) = Sum_{k=0..n} A026300(n, k)*(2^(k+1) + (-1)^k)/3, where A026300 is the Motzkin triangle; a(n) = Sum_{k=0..n} ((k+1)/(n+1))*Sum_{j=0..n+1} C(n+1, j)*C(j, 2j-n+k)*(2^(k+1) + (-1)^k)/3.
a(n) = Sum_{k=0..n} A089942(n,k)*2^k = Sum_{k=0..n} A071947(n,k)*2^(n-k). - Philippe Deléham, Mar 31 2007
Showing 1-2 of 2 results.