cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A127328 Inverse binomial transform of A026641; binomial transform of A127361.

Original entry on oeis.org

1, 0, 3, 3, 15, 30, 99, 252, 747, 2064, 5973, 16995, 49089, 141414, 409755, 1188243, 3455811, 10064952, 29368377, 85809681, 251067645, 735446106, 2156695533, 6330729438, 18600079221, 54693760680, 160951905819, 473984678037, 1396755865527, 4118553190254
Offset: 0

Views

Author

Philippe Deléham, Mar 29 2007

Keywords

Comments

Hankel transform is 3^n.

Programs

  • GAP
    List([0..30], n-> Sum([0..n], k-> Sum([0..k], j-> (-1)^(n+j)* Binomial(k+j, j)*Binomial(n,k)))); # G. C. Greubel, Apr 30 2019
  • Magma
    [ (&+[ (&+[(-1)^(n+j)*Binomial(k+j, j)*Binomial(n, k): j in [0..k]]): k in [0..n]]) : n in [0..30]]; // G. C. Greubel, Apr 30 2019
    
  • Mathematica
    a[n_]:= Sum[(-1)^n*Sum[(-1)^j*Binomial[k+j, j], {j,0,k}]*Binomial[n, k], {k, 0, n}]; Table[a[n], {n, 0, 30}] (* G. C. Greubel, Apr 30 2019 *)
  • PARI
    {a(n) = sum(k=0,n, sum(j=0,k, (-1)^(n+j)*binomial(k+j, j)* binomial(n, k)))}; \\ G. C. Greubel, Apr 30 2019
    
  • Sage
    [sum(sum((-1)^(n+j)*binomial(k+j, j)*binomial(n, k) for j in (0..k)) for k in (0..n)) for n in (0..30)] # G. C. Greubel, Apr 30 2019
    

Formula

a(n) = Sum_{k=0..n} Sum_{j=0..k} (-1)^(n+j)*binomial(k+j, j)*binomial(n, k). - G. C. Greubel, Apr 30 2019
a(n) ~ 3^n / sqrt(3*Pi*n). - Vaclav Kotesovec, Jul 20 2019

Extensions

Terms a(10) onward added by G. C. Greubel, Apr 30 2019

A036987 Fredholm-Rueppel sequence.

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Keywords

Comments

Binary representation of the Kempner-Mahler number Sum_{k>=0} 1/2^(2^k) = A007404.
a(n) = (product of digits of n; n in binary notation) mod 2. This sequence is a transformation of the Thue-Morse sequence (A010060), since there exists a function f such that f(sum of digits of n) = (product of digits of n). - Ctibor O. Zizka, Feb 12 2008
a(n-1), n >= 1, the characteristic sequence for powers of 2, A000079, is the unique solution of the following formal product and formal power series identity: Product_{j>=1} (1 + a(j-1)*x^j) = 1 + Sum_{k>=1} x^k = 1/(1-x). The product is therefore Product_{l>=1} (1 + x^(2^l)). Proof. Compare coefficients of x^n and use the binary representation of n. Uniqueness follows from the recurrence relation given for the general case under A147542. - Wolfdieter Lang, Mar 05 2009
a(n) is also the number of orbits of length n for the map x -> 1-cx^2 on [-1,1] at the Feigenbaum critical value c=1.401155... . - Thomas Ward, Apr 08 2009
A054525 (Mobius transform) * A001511 = A036987 = A047999^(-1) * A001511 = the inverse of Sierpiński's gasket * the ruler sequence. - Gary W. Adamson, Oct 26 2009 [Of course this is only vaguely correct depending on how the fuzzy indexing in these formulas is made concrete. - R. J. Mathar, Jun 20 2014]
Characteristic function of A000225. - Reinhard Zumkeller, Mar 06 2012
Also parity of the Catalan numbers A000108. - Omar E. Pol, Jan 17 2012
For n >= 2, also the largest exponent k >= 0 such that n^k in binary notation does not contain both 0 and 1. Unlike for the decimal version of this sequence, A062518, where the terms are only conjectural, for this sequence the values of a(n) can be proved to be the characteristic function of A000225, as follows: n^k will contain both 0 and 1 unless n^k = 2^r-1 for some r. But this is a special case of Catalan's equation x^p = y^q-1, which was proved by Preda Mihăilescu to have no nontrivial solution except 2^3 = 3^2 - 1. - Christopher J. Smyth, Aug 22 2014
Image, under the coding a,b -> 1; c -> 0, of the fixed point, starting with a, of the morphism a -> ab, b -> cb, c -> cc. - Jeffrey Shallit, May 14 2016
Number of nonisomorphic Boolean algebras of order n+1. - Jianing Song, Jan 23 2020

Examples

			G.f. = 1 + x + x^3 + x^7 + x^15 + x^31 + x^63 + x^127 + x^255 + x^511 + ...
a(7) = 1 since 7 = 2^3 - 1, while a(10) = 0 since 10 is not of the form 2^k - 1 for any integer k.
		

Crossrefs

The first row of A073346. Occurs for first time in A073202 as row 6 (and again as row 8).
Congruent to any of the sequences A000108, A007460, A007461, A007463, A007464, A061922, A068068 reduced modulo 2. Characteristic function of A000225.
If interpreted with offset=1 instead of 0 (i.e., a(1)=1, a(2)=1, a(3)=0, a(4)=1, ...) then this is the characteristic function of 2^n (A000079) and as such occurs as the first row of A073265. Also, in that case the INVERT transform will produce A023359.
This is Guy Steele's sequence GS(1, 3), also GS(3, 1) (see A135416).
Cf. A054525, A047999. - Gary W. Adamson, Oct 26 2009

Programs

  • Haskell
    a036987 n = ibp (n+1) where
       ibp 1 = 1
       ibp n = if r > 0 then 0 else ibp n' where (n',r) = divMod n 2
    a036987_list = 1 : f [0,1] where f (x:y:xs) = y : f (x:xs ++ [x,x+y])
    -- Same list generator function as for a091090_list, cf. A091090.
    -- Reinhard Zumkeller, May 19 2015, Apr 13 2013, Mar 13 2013
    
  • Maple
    A036987:= n-> `if`(2^ilog2(n+1) = n+1, 1, 0):
    seq(A036987(n), n=0..128);
  • Mathematica
    RealDigits[ N[ Sum[1/10^(2^n), {n, 0, Infinity}], 110]][[1]]
    (* Recurrence: *)
    t[n_, 1] = 1; t[1, k_] = 1;
    t[n_, k_] := t[n, k] =
      If[n < k, If[n > 1 && k > 1, -Sum[t[k - i, n], {i, 1, n - 1}], 0],
       If[n > 1 && k > 1, Sum[t[n - i, k], {i, 1, k - 1}], 0]];
    Table[t[n, k], {k, n, n}, {n, 104}]
    (* Mats Granvik, Jun 03 2011 *)
    mb2d[n_]:=1 - Module[{n2 = IntegerDigits[n, 2]}, Max[n2] - Min[n2]]; Array[mb2d, 120, 0] (* Vincenzo Librandi, Jul 19 2019 *)
    Table[PadRight[{1},2^k,0],{k,0,7}]//Flatten (* Harvey P. Dale, Apr 23 2022 *)
  • PARI
    {a(n) =( n++) == 2^valuation(n, 2)}; /* Michael Somos, Aug 25 2003 */
    
  • PARI
    a(n) = !bitand(n, n+1); \\ Ruud H.G. van Tol, Apr 05 2023
    
  • Python
    from sympy import catalan
    def a(n): return catalan(n)%2 # Indranil Ghosh, May 25 2017
    
  • Python
    def A036987(n): return int(not(n&(n+1))) # Chai Wah Wu, Jul 06 2022

Formula

1 followed by a string of 2^k - 1 0's. Also a(n)=1 iff n = 2^m - 1.
a(n) = a(floor(n/2)) * (n mod 2) for n>0 with a(0)=1. - Reinhard Zumkeller, Aug 02 2002 [Corrected by Mikhail Kurkov, Jul 16 2019]
Sum_{n>=0} 1/10^(2^n) = 0.110100010000000100000000000000010...
1 if n=0, floor(log_2(n+1)) - floor(log_2(n)) otherwise. G.f.: (1/x) * Sum_{k>=0} x^(2^k) = Sum_{k>=0} x^(2^k-1). - Ralf Stephan, Apr 28 2003
a(n) = 1 - A043545(n). - Michael Somos, Aug 25 2003
a(n) = -Sum_{d|n+1} mu(2*d). - Benoit Cloitre, Oct 24 2003
Dirichlet g.f. for right-shifted sequence: 2^(-s)/(1-2^(-s)).
a(n) = A000108(n) mod 2 = A001405(n) mod 2. - Paul Barry, Nov 22 2004
a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n,k)*Sum_{j=0..k} binomial(k, 2^j-1). - Paul Barry, Jun 01 2006
A000523(n+1) = Sum_{k=1..n} a(k). - Mitch Harris, Jul 22 2011
a(n) = A209229(n+1). - Reinhard Zumkeller, Mar 07 2012
a(n) = Sum_{k=1..n} A191898(n,k)*cos(Pi*(n-1)*(k-1))/n; (conjecture). - Mats Granvik, Mar 04 2013
a(n) = A000035(A000108(n)). - Omar E. Pol, Aug 06 2013
a(n) = 1 iff n=2^k-1 for some k, 0 otherwise. - M. F. Hasler, Jun 20 2014
a(n) = ceiling(log_2(n+2)) - ceiling(log_2(n+1)). - Gionata Neri, Sep 06 2015
From John M. Campbell, Jul 21 2016: (Start)
a(n) = (A000168(n-1) mod 2).
a(n) = (A000531(n+1) mod 2).
a(n) = (A000699(n+1) mod 2).
a(n) = (A000891(n) mod 2).
a(n) = (A000913(n-1) mod 2), for n>1.
a(n) = (A000917(n-1) mod 2), for n>0.
a(n) = (A001142(n) mod 2).
a(n) = (A001246(n) mod 2).
a(n) = (A001246(n) mod 4).
a(n) = (A002057(n-2) mod 2), for n>1.
a(n) = (A002430(n+1) mod 2). (End)
a(n) = 2 - A043529(n). - Antti Karttunen, Nov 19 2017
a(n) = floor(1+log(n+1)/log(2)) - floor(log(2n+1)/log(2)). - Adriano Caroli, Sep 22 2019
This is also the decimal expansion of -Sum_{k>=1} mu(2*k)/(10^k - 1), where mu is the Möbius function (A008683). - Amiram Eldar, Jul 12 2020

Extensions

Edited by M. F. Hasler, Jun 20 2014

A026641 Number of nodes of even outdegree (including leaves) in all ordered trees with n edges.

Original entry on oeis.org

1, 1, 4, 13, 46, 166, 610, 2269, 8518, 32206, 122464, 467842, 1794196, 6903352, 26635774, 103020253, 399300166, 1550554582, 6031074184, 23493410758, 91638191236, 357874310212, 1399137067684, 5475504511858, 21447950506396
Offset: 0

Views

Author

Keywords

Comments

Number of lattice paths from (0,0) to (n,n) using steps (1,0),(0,2),(1,1). - Joerg Arndt, Jun 30 2011
From Emeric Deutsch, Jan 25 2004: (Start)
Let B = 1/sqrt(1-4*z) = g.f. for central binomial coeffs (A000984); F = (1-sqrt(1-4*z))/(z*(3-sqrt(1-4*z))) = g.f. for (A000957).
B = 1 + 2*z + 6*z^2 + 20*z^3 + ... gives the number of nodes in all ordered trees with 0,1,2,3,... edges. On p. 288 of the Deutsch-Shapiro paper one finds that z*B*F = z + 2*z^2 + 7*z^3 + 24*z^4 + ... gives the number of nodes of odd outdegree in all ordered trees with 1,2,3,... edges (cf. A014300).
Consequently, B - z*B*F = 2/(3*sqrt(1-4*z)-1+4*z) = 1 + z + 4*z^2 + 13*z^3 + 46*z^4 + ... gives the total number of nodes of even degree in all ordered trees with 0,1,2,3,4,... edges. (End)
Main diagonal of the following array: first column is filled with 1's, first row is filled alternatively with 1's or 0's: m(i,j) = m(i-1,j) + m(i,j-1): 1 0 1 0 1 ... / 1 1 2 2 3 ... / 1 2 4 6 9 ... / 1 3 7 13 22 ... / 1 4 11 24 46 ... - Benoit Cloitre, Aug 05 2002
The Hankel transform of [1,1,4,13,46,166,610,2269,...] is 3^n. - Philippe Deléham, Mar 08 2007
Second binomial transform of A127361. - Philippe Deléham, Mar 14 2007
Starting with offset 1, generated from iterates of M * [1,1,1,...]; where M = a tridiagonal matrix with (0,2,2,2,...) in the main diagonal and (1,1,1,...) in the super and subdiagonals. - Gary W. Adamson, Jan 04 2009
Equals left border of triangle A158815. - Gary W. Adamson, Mar 27 2009
Equals the INVERTi transform of A101850: (1, 2, 7, 26, 100, ...). - Gary W. Adamson, Jan 10 2012
Diagonal of rational function 1/(1 - (x + x*y + y^2)). - Gheorghe Coserea, Aug 06 2018
Let A(i, j) denote the infinite array such that the i-th row of this array is the sequence obtained by applying the partial sum operator i times to the function (-1)^(n+1) for n > 0. Then A(n, n) equals a(n-1) for all n > 0. - John M. Campbell, Jan 20 2019
These numbers have the same parity as the Catalan numbers A000108; that is, a(n) is odd if and only if n = 2^k - 1 for some nonnegative integer k. It appears that if a(n) is odd then a(n) == 1 (mod 4). - Peter Bala, Feb 07 2024
The number a(n)/(n+1) is the coefficient of x^(n+1) in log(1+(1-sqrt(1-4*x))/2), the generating series of the Sabinin operad. - F. Chapoton, Mar 14 2024

Examples

			From _Joerg Arndt_, Jul 01 2011: (Start)
The triangle of number of lattice paths from (0,0) to (n,k) using steps (1,0),(0,2),(1,1) begins
  1;
  1, 1;
  1, 2,  4;
  1, 3,  7, 13;
  1, 4, 11, 24,  46;
  1, 5, 16, 40,  86, 166;
  1, 6, 22, 62, 148, 314,  610;
  1, 7, 29, 91, 239, 553, 1163, 2269;
This sequence is the diagonal. (End)
G.f. = 1 + x + 4*x^2 + 13*x^3 + 46*x^4 + 166*x^5 + 610*x^6 + 2269*x^7 + ...
		

Crossrefs

Cf. A091526 (k=-2), A072547 (k=-1), this sequence (k=0), A014300 (k=1), A014301 (k=2), A172025 (k=3), A172061 (k=4), A172062 (k=5), A172063 (k=6), A172064 (k=7), A172065 (k=8), A172066 (k=9), A172067 (k=10).

Programs

  • GAP
    List([0..25],n->(-1)^n*Sum([0..n],k->(-1)^k*Binomial(n+k,k))); # Muniru A Asiru, Aug 06 2018
    
  • Magma
    [(-1)^n*(&+[(-1)^k*Binomial(n+k, k): k in [0..n]]): n in [0..30]]; // G. C. Greubel, Feb 12 2019
    
  • Maple
    seq(add((binomial(k+n, n-k)*binomial(n-k, k)),k=0..floor(n/2)),n=0..30);
    # From Richard Choulet, Jan 22 2010: (Start)
    a:= n -> add(binomial(2*n-k, k)*binomial(k, n-k), k=floor(n/2)..n):
    a:= n -> `if`(n<2, 1, (3/(2))*binomial(2*n-1, n-1)-(1/2)*a(n-1)):
    a:= n -> (-1/2)^(n+2)+(2/3)*add(4^(n-k)*(binomial(2*k, k)*(1/(1-2*k))
            *(1-(-1/8)^(n-k+1))), k=0..n):
    a:= n -> (-1/2)^(n+2)+(3/4)*add(((-1/2)^(n-k))*(binomial(2*k, k)), k=0..n):
    seq(a(n), n=0..30); # (End)
    gf := log(1 + (1 - sqrt(1 - 4*x))/2) / x: ser := series(gf, x, 30):
    seq((n + 1)*coeff(ser, x, n), n = 0..24);  # Peter Luschny, Mar 16 2024
  • Mathematica
    f[n_]:= Sum[ Binomial[n+k, k]*Cos[Pi*(n+k)], {k, 0, n}]; Array[f, 25, 0] (* Robert G. Wilson v, Apr 02 2012 *)
    CoefficientList[Series[2/(3*Sqrt[1-4*x]-1+4*x), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 12 2014 *)
    a[ n_]:= SeriesCoefficient[ D[ Log[1+(1-Sqrt[1-4x])/2], x], {x, 0, n}]; (* Michael Somos, May 18 2015 *)
  • PARI
    a(n)=(-1)^n*sum(k=0,n,(-1)^k*binomial(n+k,k))
    
  • PARI
    /* same as in A092566 but use */
    steps=[[1,0], [0,2], [1,1]]; /* Joerg Arndt, Jun 30 2011 */
    
  • Sage
    [(-1)^n*sum((-1)^k*binomial(n+k, k) for k in (0..n)) for n in (0..30)] # G. C. Greubel, Feb 12 2019

Formula

G.f. is logarithmic derivative of the generating function for the Catalan numbers A000108. So this sequence might be called the "log-Catalan" numbers. - Murray R. Bremner, Jan 25 2004
a(n) = Sum_{k=0..floor(n/2)} binomial(k+n, n-k)*binomial(n-k, k). - Detlef Pauly (dettodet(AT)yahoo.de), Nov 15 2001
G.f.: 2/(3*sqrt(1-4*z)-1+4*z). - Emeric Deutsch, Jul 09 2002
a(n) = (-1)^n*Sum_{k=0..n} (-1)^k*C(n+k, k). - Benoit Cloitre, Aug 20 2002
a(n) = Sum_{j=0..floor(n/2)} binomial(2*n-2*j-1, n-1). - Emeric Deutsch, Jan 28 2004
From Paul Barry, Dec 18 2004: (Start)
A Catalan transform of the Jacobsthal numbers A001045(n+1) under the mapping G(x)-> G(xc(x)), c(x) the g.f. of A000108. The inverse mapping is H(x)->H(x(1-x)).
a(n) = Sum_{k=0..n} (k/(2*n-k))*binomial(2*n-k, n-k)*A001045(k+1). (End)
a(n) = Sum_{k=0..n} binomial(2*n-k, k)*binomial(k, n-k). - Paul Barry, Jul 25 2005
a(n) = Sum_{k=0..n-1} A126093(n,k). - Philippe Deléham, Mar 08 2007
a(n) = (-1/2)^(n+2) + (2/3)*Sum_{k=0..n} ( (4^n-k)*binomial(2*k,k)*(1/(1-2*k))*(1-(-1/8)^(n-k+1)) ). - Yalcin Aktar, Jul 06 2007
a(n) = (-1/2)^(n+2) + (3/4)*Sum_{k=0..n} (-1/2)^(n-k)*binomial(2*k,k). - Yalcin Aktar, Jul 06 2007
From Richard Choulet, Jan 22 2010: (Start)
a(n) = (3*binomial(2*n-1,n-1) - d(n-1))/2, where d(n) = Sum_{k=floor(n/2)..n} binomial(2*n-k, k)*binomial(k, n-k).
a(n) = a(n-1) + (3/2)*Sum_{k=2..n} (1/(2*k-1))*binomial(2*k,k)*a(n-k).
a(n) = (2/3)*binomial(2*n,n) + (2/9)*((-2)^n/n!)*Sum_{k>=0} ( Product_{p=0..n-1} (k-2*p) /3^k).
a(n) = Sum_{k=0..n} (-1)^k*binomial(2*n-k,n).
a(n) = ( Sum_{k=0..n} (1/2)^(n-k+1)*binomial(n+k,k) )^2*(-1/2)^(n+2). (End)
From Gary W. Adamson, Nov 22 2011: (Start)
a(n) is the upper left term of M^n, M = an infinite square production matrix as follows:
1, 3, 0, 0, 0, ...
1, 1, 1, 0, 0, ...
1, 1, 1, 1, 0, ...
1, 1, 1, 1, 1, ...
...
Also, a(n+1) is the sum of top row terms of M^n; e.g. top row of M^3 = (13, 21, 9, 3), sum = 46 = a(4), a(3) = 13. (End)
D-finite with recurrence: 2n*a(n) + (4-7n)*a(n-1) + 2*(1-2n)*a(n-2) = 0. - R. J. Mathar, Dec 17 2011 [The recurrence is proved with the Wilf-Zeilberger (WZ) method applied to Sum_{k=0..floor(n/2)} binomial(k+n, n-k)*binomial(n-k, k). - T. Amdeberhan, Jul 23 2012]
a(n) = A035317(2*n-1,n) for n > 0. - Reinhard Zumkeller, Jul 19 2012
a(n) ~ 2^(2*n+1) / (3*sqrt(Pi*n)). - Vaclav Kotesovec, Feb 12 2014
a(n) = binomial(2*n,n)*hypergeom([1, -n], [-2*n], -1). - Peter Luschny, May 22 2014
G.f. is the derivative of the logarithm of the g.f. for A120588. - Michael Somos, May 18 2015
a(n) = [x^n] 1/((1 - x^2)*(1 - x)^n). - Ilya Gutkovskiy, Oct 25 2017
From Peter Bala, Feb 25 2019: (Start)
a(n) = Sum_{k = 0..n} binomial(2*n + 1, n + k + 1)*(-2)^k.
a(n-1) = (1/2)*binomial(2*n,n)*( 1 - 2*(n-1)/(n+1) + 4*(n-1)*(n-2)/((n+1)*(n+2)) - 8*(n-1)*(n-2)*(n-3)/((n+1)*(n+2)*(n+3)) + ...) = (1/2)*binomial(2*n,n)*hypergeom([1 - n, 1], [n + 1], 2). (End)
a(0)=1, a(1)=1, and a(n) = (2 - 1/n)*a(n-2) + (7/2 - 2/n)*a(n-1) for n > 1. - Reginald Robson, Nov 01 2022

A061554 Square table read by antidiagonals: a(n,k) = binomial(n+k, floor(k/2)).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 6, 4, 4, 1, 1, 10, 10, 5, 5, 1, 1, 20, 15, 15, 6, 6, 1, 1, 35, 35, 21, 21, 7, 7, 1, 1, 70, 56, 56, 28, 28, 8, 8, 1, 1, 126, 126, 84, 84, 36, 36, 9, 9, 1, 1, 252, 210, 210, 120, 120, 45, 45, 10, 10, 1, 1, 462, 462, 330, 330, 165, 165, 55, 55, 11, 11, 1, 1
Offset: 0

Views

Author

Henry Bottomley, May 17 2001

Keywords

Comments

Equivalently, a triangle read by rows, where the rows are obtained by sorting the elements of the rows of Pascal's triangle (A007318) into descending order. - Philippe Deléham, May 21 2005
Equivalently, as a triangle read by rows, this is T(n,k)=binomial(n,floor((n-k)/2)); column k then has e.g.f. Bessel_I(k,2x)+Bessel_I(k+1,2x). - Paul Barry, Feb 28 2006
Antidiagonal sums are A037952(n+1) = C(n+1,[n/2]). Matrix inverse is the row reversal of triangle A066170. Eigensequence is A125094(n) = Sum_{k=0..n-1} A125093(n-1,k)*A125094(k). - Paul D. Hanna, Nov 20 2006
Riordan array (1/(1-x-x^2*c(x^2)),x*c(x^2)); where c(x)=g.f.for Catalan numbers A000108. - Philippe Deléham, Mar 17 2007
Triangle T(n,k), 0<=k<=n, read by rows given by: T(0,0)=1, T(n,k)=0 if k<0 or if k>n, T(n,0)=T(n-1,0)+T(n-1,1), T(n,k)=T(n-1,k-1)+T(n-1,k+1) for k>=1. - Philippe Deléham, Mar 27 2007
This triangle belongs to the family of triangles defined by: T(0,0)=1, T(n,k)=0 if k<0 or if k>n, T(n,0)=x*T(n-1,0)+T(n-1,1), T(n,k)=T(n-1,k-1)+y*T(n-1,k)+T(n-1,k+1) for k>=1. Other triangles arise by choosing different values for (x,y): (0,0) -> A053121; (0,1) -> A089942; (0,2) -> A126093; (0,3) -> A126970; (1,0)-> A061554; (1,1) -> A064189; (1,2) -> A039599; (1,3) -> A110877; (1,4) -> A124576; (2,0) -> A126075; (2,1) -> A038622; (2,2) -> A039598; (2,3) -> A124733; (2,4) -> A124575; (3,0) -> A126953; (3,1) -> A126954; (3,2) -> A111418; (3,3) -> A091965; (3,4) -> A124574; (4,3) -> A126791; (4,4) -> A052179; (4,5) -> A126331; (5,5) -> A125906. - Philippe Deléham, Sep 25 2007
T(n,k) is the number of paths from (0,k) to some (n,m) which never dip below y=0, touch y=0 at least once and are made up only of the steps (1,1) and (1,-1). This can be proved using the recurrence supplied by Deléham. - Gerald McGarvey, Oct 15 2008
Triangle read by rows = partial sums of A053121 terms starting from the right. - Gary W. Adamson, Oct 24 2008
As a subset of the "family of triangles" (Deleham comment of Sep 25 2007), beginning with a signed variant of A061554, M = (-1,0) = (1; -1, 1; 2, -1, 1; -3, 3, -1, 1; ...) successive binomial transforms of M yield (0,1) - A089942; (1,2) - A039599; (2,3) - A124733; (3,4) - A124574; (4,5) - A126331; ... such that the binomial transform of the triangle generated from (n,n+1) = the triangle generated from (n+1,n+2). Similarly, another subset beginning with A053121 - (0,0), and taking successive binomial transforms yields (1,1) - A064189; (2,2) - A039598; (3,3) - A091965, ... By rows, the triangle generated from (n,n) can be obtained by taking pairwise sums from the (n-1,n) triangle starting from the right. For example, row 2 of (1,2) - A039599 = (2, 3, 1); and taking pairwise sums from the right we obtain (5, 4, 1) = row 2 of (2,2) - A039598. - Gary W. Adamson, Aug 04 2011
The triangle by rows (n) with alternating signs (+-+...) from the top as a set of simultaneous equations solves for diagonal lengths of odd N (N = 2n+1) regular polygons. The constants in each case are powers of c = 2*cos(2*Pi/N). By way of example, the first 3 rows relate to the heptagon and the simultaneous equations are (1,0,0) = 1; (-1,1,0) = c = 1.24697...; and (2,-1,1) = c^2. The answers are 1, 2.24697..., and 1.801...; the 3 distinct diagonal lengths of the heptagon with edge = 1. - Gary W. Adamson, Sep 07 2011

Examples

			The array starts:
   1, 1,  2,  3,  6, 10,  20,  35,   70,  126, ...
   1, 1,  3,  4, 10, 15,  35,  56,  126,  210, ...
   1, 1,  4,  5, 15, 21,  56,  84,  210,  330, ...
   1, 1,  5,  6, 21, 28,  84, 120,  330,  495, ...
   1, 1,  6,  7, 28, 36, 120, 165,  495,  715, ...
   1, 1,  7,  8, 36, 45, 165, 220,  715, 1001, ...
   1, 1,  8,  9, 45, 55, 220, 286, 1001, 1365, ...
   1, 1,  9, 10, 55, 66, 286, 364, 1365, 1820, ...
   1, 1, 10, 11, 66, 78, 364, 455, 1820, 2380, ...
   1, 1, 11, 12, 78, 91, 455, 560, 2380, 3060, ...
Triangle (antidiagonal) version begins:
    1;
    1,   1;
    2,   1,   1;
    3,   3,   1,   1;
    6,   4,   4,   1,   1;
   10,  10,   5,   5,   1,   1;
   20,  15,  15,   6,   6,   1,  1;
   35,  35,  21,  21,   7,   7,  1,  1;
   70,  56,  56,  28,  28,   8,  8,  1,  1;
  126, 126,  84,  84,  36,  36,  9,  9,  1,  1;
  252, 210, 210, 120, 120,  45, 45, 10, 10,  1, 1;
  462, 462, 330, 330, 165, 165, 55, 55, 11, 11, 1, 1; ...
Matrix inverse begins:
   1;
  -1,  1;
  -1, -1,   1;
   1, -2,  -1,   1;
   1,  2,  -3,  -1,  1;
  -1,  3,   3,  -4, -1,  1;
  -1, -3,   6,   4, -5, -1,  1;
   1, -4,  -6,  10,  5, -6, -1,  1;
   1,  4, -10, -10, 15,  6, -7, -1, 1; ...
From _Paul Barry_, May 21 2009: (Start)
Production matrix is
  1, 1,
  1, 0, 1,
  0, 1, 0, 1,
  0, 0, 1, 0, 1,
  0, 0, 0, 1, 0, 1,
  0, 0, 0, 0, 1, 0, 1,
  0, 0, 0, 0, 0, 1, 0, 1 (End)
		

Crossrefs

Rows are A001405, A037952, A037955, A037951, A037956, A037953, A037957 etc. Columns are truncated pairs of A000012, A000027, A000217, A000292, A000332, A000389, A000579, etc. Main diagonal is alternate values of A051036.

Programs

  • Maple
    T := proc(n, k) option remember;
    if n = k then 1 elif k < 0 or n < 0 or k > n then 0
    elif k = 0 then T(n-1, 0) + T(n-1, 1) else T(n-1, k-1) + T(n-1, k+1) fi end:
    for n from 0 to 9 do seq(T(n, k), k = 0..n) od; # Peter Luschny, May 25 2021
  • Mathematica
    t[n_, k_] = Binomial[n, Floor[(n+1)/2 - (-1)^(n-k)*(k+1)/2]]; Flatten[Table[t[n, k], {n, 0, 11}, {k, 0, n}]] (* Jean-François Alcover, May 31 2011 *)
  • PARI
    T(n,k)=binomial(n,(n+1)\2-(-1)^(n-k)*((k+1)\2))

Formula

As a triangle: T(n,k) = binomial(n,m) where m = floor((n+1)/2 - (-1)^(n-k)*(k+1)/2).
a(0, k) = binomial(k, floor(k/2)) = A001405(k); for n>0 T(n, k) = T(n+1, k-2) + T(n-1, k).
n-th row = M^n * V, where M = the infinite tridiagonal matrix with all 1's in the super and subdiagonals and (1,0,0,0,...) in the main diagonal. V = the infinite vector [1,0,0,0,...]. Example: (3,3,1,1,0,0,0,...) = M^3 * V. - Gary W. Adamson, Nov 04 2006
Sum_{k=0..n} T(m,k)*T(n,k) = T(m+n,0) = A001405(m+n). - Philippe Deléham, Feb 26 2007
Sum_{k=0..n} T(n,k)=2^n. - Philippe Deléham, Mar 27 2007
Sum_{k=0..n} T(n,k)*x^k = A127361(n), A126869(n), A001405(n), A000079(n), A127358(n), A127359(n), A127360(n) for x = -2, -1, 0, 1, 2, 3, 4 respectively. - Philippe Deléham, Dec 04 2009

Extensions

Entry revised by N. J. A. Sloane, Nov 22 2006

A107430 Triangle read by rows: row n is row n of Pascal's triangle (A007318) sorted into increasing order.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 4, 6, 1, 1, 5, 5, 10, 10, 1, 1, 6, 6, 15, 15, 20, 1, 1, 7, 7, 21, 21, 35, 35, 1, 1, 8, 8, 28, 28, 56, 56, 70, 1, 1, 9, 9, 36, 36, 84, 84, 126, 126, 1, 1, 10, 10, 45, 45, 120, 120, 210, 210, 252, 1, 1, 11, 11, 55, 55, 165, 165, 330, 330, 462, 462, 1
Offset: 0

Views

Author

Philippe Deléham, May 21 2005

Keywords

Comments

By rows, equals partial sums of A053121 reversed rows. Example: Row 4 of A053121 = (2, 0, 3, 0, 1) -> (1, 0, 3, 0, 2) -> (1, 1, 4, 4, 6). - Gary W. Adamson, Dec 28 2008, edited by Michel Marcus, Sep 22 2015

Examples

			Triangle begins:
1;
1,1;
1,1,2;
1,1,3,3;
1,1,4,4,6;
		

Crossrefs

A061554 is similar but with rows sorted into decreasing order.
Cf. A034868.
Cf. A053121. - Gary W. Adamson, Dec 28 2008
Cf. A103284.

Programs

  • Haskell
    import Data.List (sort)
    a107430 n k = a107430_tabl !! n !! k
    a107430_row n = a107430_tabl !! n
    a107430_tabl = map sort a007318_tabl
    -- Reinhard Zumkeller, May 26 2013
    
  • Magma
    /* As triangle */ [[Binomial(n,Floor(k/2)) : k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Sep 22 2015
    
  • Maple
    for n from 0 to 10 do sort([seq(binomial(n,k),k=0..n)]) od; # yields sequence in triangular form. - Emeric Deutsch, May 28 2005
  • Mathematica
    Flatten[ Table[ Sort[ Table[ Binomial[n, k], {k, 0, n}]], {n, 0, 12}]] (* Robert G. Wilson v, May 28 2005 *)
  • PARI
    for(n=0,20, for(k=0,n, print1(binomial(n,floor(k/2)), ", "))) \\ G. C. Greubel, May 22 2017

Formula

T(n,k) = C(n,floor(k/2)). - Paul Barry, Dec 15 2006; corrected by Philippe Deléham, Mar 15 2007
Sum_{k=0..n} T(n,k)*x^(n-k) = A127363(n), A127362(n), A127361(n), A126869(n), A001405(n), A000079(n), A127358(n), A127359(n), A127360(n) for x=-4,-3,-2,-1,0,1,2,3,4 respectively. - Philippe Deléham, Mar 29 2007

Extensions

More terms from Emeric Deutsch and Robert G. Wilson v, May 28 2005

A100098 An inverse Chebyshev transform of (1-x)/(1-2x).

Original entry on oeis.org

1, 1, 4, 7, 22, 46, 130, 295, 790, 1870, 4864, 11782, 30148, 73984, 187534, 463687, 1168870, 2902870, 7293640, 18161170, 45541492, 113576596, 284470564, 710118262, 1777323772, 4439253196, 11105933440, 27749232700, 69403169200
Offset: 0

Views

Author

Paul Barry, Nov 04 2004

Keywords

Comments

Image of (1-x)/(1-2*x) under the transform g(x)->(1/sqrt(1-4*x^2))*g(x*c(x^2)), where c(x) is the g.f. of the Catalan numbers A000108. This is the inverse of the Chebyshev transform which takes A(x) to ((1-x^2)/(1+x^2))*A(x/(1+x^2)).
Transform of the Jacobsthal numbers A001045(n+1) under the Riordan array (c(x^2),xc(x^2)). Hankel transform is 3^n. - Paul Barry, Oct 01 2007
Unsigned version of A127361. - Philippe Deléham, Nov 25 2007

Programs

  • Mathematica
    CoefficientList[Series[Sqrt[1-4*x^2]*(Sqrt[1-4*x^2]-6*x+3)/(2*(2-5*x)*(1-4*x^2)), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 08 2014 *)

Formula

G.f.: sqrt(1-4x^2)*(sqrt(1-4x^2)-6x+3)/(2*(2-5x)*(1-4x^2));
a(n) = Sum_{k=0..floor(n/2)} binomial(n, k)*(2^(n-2k) + 0^(n-2k))/2.
From Paul Barry, Oct 01 2007: (Start)
G.f.: (1+2x+3*sqrt(1-4x^2))/(4-2x-20x^2);
a(n) = Sum_{k=0..floor((n+1)/2)} (C(n,k) - C(n,k-1))*A001045(n-2k+1). (End)
Conjecture: 2*n*a(n) + (-5*n+4)*a(n-1) + 2*(-4*n+3)*a(n-2) + 20*(n-2)*a(n-3) = 0. - R. J. Mathar, Nov 22 2012
a(n) ~ 5^n / 2^(n+1). - Vaclav Kotesovec, Feb 08 2014

A171650 Triangle T, read by rows : T(n,k) = A007318(n,k)*A026641(n-k).

Original entry on oeis.org

1, 1, 1, 4, 2, 1, 13, 12, 3, 1, 46, 52, 24, 4, 1, 166, 230, 130, 40, 5, 1, 610, 996, 690, 260, 60, 6, 1, 2269, 4270, 3486, 1610, 455, 84, 7, 1, 8518, 18152, 17080, 9296, 3220, 728, 112, 8, 1, 32206, 76662, 81684, 51240, 20916, 5796, 1092, 144, 9, 1
Offset: 0

Views

Author

Philippe Deléham, Dec 13 2009

Keywords

Examples

			Triangle begins as
    1;
    1,   1;
    4,   2,   1;
   13,  12,   3,  1;
   46,  52,  24,  4, 1;
  166, 230, 130, 40, 5, 1; ...
		

Programs

  • Magma
    [[(-1)^(n-k)*Binomial(n,k)*(&+[(-1)^j*Binomial(n-k+j,j): j in [0..n-k]]): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Apr 29 2019
    
  • Mathematica
    T[n_, k_]:= (-1)^(n-k)*Binomial[n, k]*Sum[(-1)^j*Binomial[n-k+j, j], {j, 0, n-k}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Apr 29 2019 *)
  • PARI
    {T(n,k) = (-1)^(n-k)*binomial(n,k)*sum(j=0,n-k,(-1)^j*binomial(n-k+j,j))}; \\ G. C. Greubel, Apr 29 2019
    
  • Sage
    [[(-1)^(n-k)*binomial(n,k)*sum((-1)^j*binomial(n-k+j,j) for j in (0..n-k)) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Apr 29 2019

Formula

Sum_{k, 0<=k<=n} T(n,k)*x^k = A127361(n), A127328(n), A026641(n), A126568(n), A133158(n) for x = -2, -1, 0, 1, 2 respectively.
T(n, k) = (-1)^(n-k)*binomial(n, k)*Sum_{j=0..n-k} (-1)^j*Binomial(n-k+j, j). - G. C. Greubel, Apr 29 2019
Showing 1-7 of 7 results.