cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 61 results. Next

A126568 Binomial transform of A026641.

Original entry on oeis.org

1, 2, 7, 29, 127, 572, 2623, 12182, 57115, 269750, 1281457, 6116585, 29310721, 140925176, 679493983, 3284357789, 15909178627, 77208716606, 375330428293, 1827310839359, 8908332730957, 43481990059796, 212472526927393
Offset: 0

Views

Author

Philippe Deléham, Mar 13 2007

Keywords

Comments

The Hankel transform of this sequence is 3^n (see A000244).
Row sums of triangle in A110877. - Philippe Deléham, Oct 10 2007

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!( (11*x^4-12*x^3-x^2+3*x-1 -Sqrt(5*x^2-6*x+1)*(5*x^3-3*x^2-1))/( Sqrt(5*x^2-6*x+1)*(4*x^4-8*x^3-3*x^2+7*x-2) -10*x^5+32*x^4-31*x^3+ 20*x^2-13*x+2) )); // G. C. Greubel, Feb 15 2019
    
  • Mathematica
    CoefficientList[Series[-(-11x^4 +Sqrt[5x^2-6x+1](5x^3-3x^2-1) +12x^3+x^2 -3x+1)/(-10x^5 +Sqrt[5x^2-6x+1](4x^4-8x^3-3x^2+7x-2) +32x^4-31 x^3+20x^2 -13x+2), {x, 0, 50}], x] (* Vincenzo Librandi, Apr 09 2014 *)
  • PARI
    my(x='x+O('x^30)); Vec((11*x^4 -12*x^3 -x^2 +3*x -1  -sqrt(5*x^2 -6*x +1)*(5*x^3-3*x^2-1))/( sqrt(5*x^2-6*x+1)*(4*x^4-8*x^3-3*x^2+7*x-2) -10*x^5 +32*x^4 -31*x^3 + 20*x^2 -13*x +2)) \\ G. C. Greubel, Feb 15 2019
    
  • Sage
    m=30; a=((11*x^4-12*x^3-x^2+3*x-1 -sqrt(5*x^2-6*x+1)*(5*x^3-3*x^2-1))/( sqrt(5*x^2-6*x+1)*(4*x^4-8*x^3-3*x^2+7*x-2) -10*x^5+32*x^4-31*x^3 + 20*x^2-13*x+2)).series(x, m+2).coefficients(x, sparse=False); a[0:m] # G. C. Greubel, Feb 15 2019

Formula

a(n) = Sum_{0<=k<=n} A110877(n,k). - Philippe Deléham, Oct 10 2007
Conjecture: 4*n*a(n) +2*(2*n-7)*a(n-1) +(-163*n+267)*a(n-2) +10*(23*n-58)*a(n-3) +75*(-n+3)*a(n-4) = 0. - R. J. Mathar, Jun 30 2013
G.f.: (11*x^4 -12*x^3 -x^2 +3*x -1 -sqrt(5*x^2-6*x+1)*(5*x^3-3*x^2-1))/( sqrt(5*x^2-6*x+1)*(4*x^4-8*x^3-3*x^2+7*x-2) -10*x^5 +32*x^4 -31*x^3 + 20*x^2 -13*x +2). - Vladimir Kruchinin, Apr 08 2014
a(n) ~ 5^(n + 1/2) / (3*sqrt(Pi*n)). - Vaclav Kotesovec, Nov 02 2023

A133158 Binomial transform of A126568, second binomial transform of A026641.

Original entry on oeis.org

1, 3, 12, 57, 294, 1578, 8658, 48177, 270774, 1533450, 8736432, 50016090, 287497380, 1658174352, 9591422286, 55618701057, 323225066790, 1882009941570, 10976834700792, 64119701075886, 375057555388884, 2196539772794172, 12878508015774468
Offset: 0

Views

Author

Philippe Deléham, Oct 08 2007

Keywords

Comments

The Hankel transform of this sequence is 3^n (see A000244).

Crossrefs

Row sums of triangle in A124575.

Programs

  • Mathematica
    CoefficientList[Series[(1 + 3*Sqrt[-1 + 2*x] / Sqrt[-1 + 6*x])/(4 - 6*x), {x, 0, 20}], x] (* Vaclav Kotesovec, Nov 02 2023 *)

Formula

Conjecture: 2*n*a(n) + (-19*n+12)*a(n-1) + 6*(8*n-11)*a(n-2) + 36*(-n+2)*a(n-3) = 0. - R. J. Mathar, Jun 30 2013
a(n) ~ 2^(n + 1/2) * 3^(n - 1/2) / sqrt(Pi*n). - Vaclav Kotesovec, Nov 02 2023

A127328 Inverse binomial transform of A026641; binomial transform of A127361.

Original entry on oeis.org

1, 0, 3, 3, 15, 30, 99, 252, 747, 2064, 5973, 16995, 49089, 141414, 409755, 1188243, 3455811, 10064952, 29368377, 85809681, 251067645, 735446106, 2156695533, 6330729438, 18600079221, 54693760680, 160951905819, 473984678037, 1396755865527, 4118553190254
Offset: 0

Views

Author

Philippe Deléham, Mar 29 2007

Keywords

Comments

Hankel transform is 3^n.

Programs

  • GAP
    List([0..30], n-> Sum([0..n], k-> Sum([0..k], j-> (-1)^(n+j)* Binomial(k+j, j)*Binomial(n,k)))); # G. C. Greubel, Apr 30 2019
  • Magma
    [ (&+[ (&+[(-1)^(n+j)*Binomial(k+j, j)*Binomial(n, k): j in [0..k]]): k in [0..n]]) : n in [0..30]]; // G. C. Greubel, Apr 30 2019
    
  • Mathematica
    a[n_]:= Sum[(-1)^n*Sum[(-1)^j*Binomial[k+j, j], {j,0,k}]*Binomial[n, k], {k, 0, n}]; Table[a[n], {n, 0, 30}] (* G. C. Greubel, Apr 30 2019 *)
  • PARI
    {a(n) = sum(k=0,n, sum(j=0,k, (-1)^(n+j)*binomial(k+j, j)* binomial(n, k)))}; \\ G. C. Greubel, Apr 30 2019
    
  • Sage
    [sum(sum((-1)^(n+j)*binomial(k+j, j)*binomial(n, k) for j in (0..k)) for k in (0..n)) for n in (0..30)] # G. C. Greubel, Apr 30 2019
    

Formula

a(n) = Sum_{k=0..n} Sum_{j=0..k} (-1)^(n+j)*binomial(k+j, j)*binomial(n, k). - G. C. Greubel, Apr 30 2019
a(n) ~ 3^n / sqrt(3*Pi*n). - Vaclav Kotesovec, Jul 20 2019

Extensions

Terms a(10) onward added by G. C. Greubel, Apr 30 2019

A171650 Triangle T, read by rows : T(n,k) = A007318(n,k)*A026641(n-k).

Original entry on oeis.org

1, 1, 1, 4, 2, 1, 13, 12, 3, 1, 46, 52, 24, 4, 1, 166, 230, 130, 40, 5, 1, 610, 996, 690, 260, 60, 6, 1, 2269, 4270, 3486, 1610, 455, 84, 7, 1, 8518, 18152, 17080, 9296, 3220, 728, 112, 8, 1, 32206, 76662, 81684, 51240, 20916, 5796, 1092, 144, 9, 1
Offset: 0

Views

Author

Philippe Deléham, Dec 13 2009

Keywords

Examples

			Triangle begins as
    1;
    1,   1;
    4,   2,   1;
   13,  12,   3,  1;
   46,  52,  24,  4, 1;
  166, 230, 130, 40, 5, 1; ...
		

Programs

  • Magma
    [[(-1)^(n-k)*Binomial(n,k)*(&+[(-1)^j*Binomial(n-k+j,j): j in [0..n-k]]): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Apr 29 2019
    
  • Mathematica
    T[n_, k_]:= (-1)^(n-k)*Binomial[n, k]*Sum[(-1)^j*Binomial[n-k+j, j], {j, 0, n-k}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Apr 29 2019 *)
  • PARI
    {T(n,k) = (-1)^(n-k)*binomial(n,k)*sum(j=0,n-k,(-1)^j*binomial(n-k+j,j))}; \\ G. C. Greubel, Apr 29 2019
    
  • Sage
    [[(-1)^(n-k)*binomial(n,k)*sum((-1)^j*binomial(n-k+j,j) for j in (0..n-k)) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Apr 29 2019

Formula

Sum_{k, 0<=k<=n} T(n,k)*x^k = A127361(n), A127328(n), A026641(n), A126568(n), A133158(n) for x = -2, -1, 0, 1, 2 respectively.
T(n, k) = (-1)^(n-k)*binomial(n, k)*Sum_{j=0..n-k} (-1)^j*Binomial(n-k+j, j). - G. C. Greubel, Apr 29 2019

A036987 Fredholm-Rueppel sequence.

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Keywords

Comments

Binary representation of the Kempner-Mahler number Sum_{k>=0} 1/2^(2^k) = A007404.
a(n) = (product of digits of n; n in binary notation) mod 2. This sequence is a transformation of the Thue-Morse sequence (A010060), since there exists a function f such that f(sum of digits of n) = (product of digits of n). - Ctibor O. Zizka, Feb 12 2008
a(n-1), n >= 1, the characteristic sequence for powers of 2, A000079, is the unique solution of the following formal product and formal power series identity: Product_{j>=1} (1 + a(j-1)*x^j) = 1 + Sum_{k>=1} x^k = 1/(1-x). The product is therefore Product_{l>=1} (1 + x^(2^l)). Proof. Compare coefficients of x^n and use the binary representation of n. Uniqueness follows from the recurrence relation given for the general case under A147542. - Wolfdieter Lang, Mar 05 2009
a(n) is also the number of orbits of length n for the map x -> 1-cx^2 on [-1,1] at the Feigenbaum critical value c=1.401155... . - Thomas Ward, Apr 08 2009
A054525 (Mobius transform) * A001511 = A036987 = A047999^(-1) * A001511 = the inverse of Sierpiński's gasket * the ruler sequence. - Gary W. Adamson, Oct 26 2009 [Of course this is only vaguely correct depending on how the fuzzy indexing in these formulas is made concrete. - R. J. Mathar, Jun 20 2014]
Characteristic function of A000225. - Reinhard Zumkeller, Mar 06 2012
Also parity of the Catalan numbers A000108. - Omar E. Pol, Jan 17 2012
For n >= 2, also the largest exponent k >= 0 such that n^k in binary notation does not contain both 0 and 1. Unlike for the decimal version of this sequence, A062518, where the terms are only conjectural, for this sequence the values of a(n) can be proved to be the characteristic function of A000225, as follows: n^k will contain both 0 and 1 unless n^k = 2^r-1 for some r. But this is a special case of Catalan's equation x^p = y^q-1, which was proved by Preda Mihăilescu to have no nontrivial solution except 2^3 = 3^2 - 1. - Christopher J. Smyth, Aug 22 2014
Image, under the coding a,b -> 1; c -> 0, of the fixed point, starting with a, of the morphism a -> ab, b -> cb, c -> cc. - Jeffrey Shallit, May 14 2016
Number of nonisomorphic Boolean algebras of order n+1. - Jianing Song, Jan 23 2020

Examples

			G.f. = 1 + x + x^3 + x^7 + x^15 + x^31 + x^63 + x^127 + x^255 + x^511 + ...
a(7) = 1 since 7 = 2^3 - 1, while a(10) = 0 since 10 is not of the form 2^k - 1 for any integer k.
		

Crossrefs

The first row of A073346. Occurs for first time in A073202 as row 6 (and again as row 8).
Congruent to any of the sequences A000108, A007460, A007461, A007463, A007464, A061922, A068068 reduced modulo 2. Characteristic function of A000225.
If interpreted with offset=1 instead of 0 (i.e., a(1)=1, a(2)=1, a(3)=0, a(4)=1, ...) then this is the characteristic function of 2^n (A000079) and as such occurs as the first row of A073265. Also, in that case the INVERT transform will produce A023359.
This is Guy Steele's sequence GS(1, 3), also GS(3, 1) (see A135416).
Cf. A054525, A047999. - Gary W. Adamson, Oct 26 2009

Programs

  • Haskell
    a036987 n = ibp (n+1) where
       ibp 1 = 1
       ibp n = if r > 0 then 0 else ibp n' where (n',r) = divMod n 2
    a036987_list = 1 : f [0,1] where f (x:y:xs) = y : f (x:xs ++ [x,x+y])
    -- Same list generator function as for a091090_list, cf. A091090.
    -- Reinhard Zumkeller, May 19 2015, Apr 13 2013, Mar 13 2013
    
  • Maple
    A036987:= n-> `if`(2^ilog2(n+1) = n+1, 1, 0):
    seq(A036987(n), n=0..128);
  • Mathematica
    RealDigits[ N[ Sum[1/10^(2^n), {n, 0, Infinity}], 110]][[1]]
    (* Recurrence: *)
    t[n_, 1] = 1; t[1, k_] = 1;
    t[n_, k_] := t[n, k] =
      If[n < k, If[n > 1 && k > 1, -Sum[t[k - i, n], {i, 1, n - 1}], 0],
       If[n > 1 && k > 1, Sum[t[n - i, k], {i, 1, k - 1}], 0]];
    Table[t[n, k], {k, n, n}, {n, 104}]
    (* Mats Granvik, Jun 03 2011 *)
    mb2d[n_]:=1 - Module[{n2 = IntegerDigits[n, 2]}, Max[n2] - Min[n2]]; Array[mb2d, 120, 0] (* Vincenzo Librandi, Jul 19 2019 *)
    Table[PadRight[{1},2^k,0],{k,0,7}]//Flatten (* Harvey P. Dale, Apr 23 2022 *)
  • PARI
    {a(n) =( n++) == 2^valuation(n, 2)}; /* Michael Somos, Aug 25 2003 */
    
  • PARI
    a(n) = !bitand(n, n+1); \\ Ruud H.G. van Tol, Apr 05 2023
    
  • Python
    from sympy import catalan
    def a(n): return catalan(n)%2 # Indranil Ghosh, May 25 2017
    
  • Python
    def A036987(n): return int(not(n&(n+1))) # Chai Wah Wu, Jul 06 2022

Formula

1 followed by a string of 2^k - 1 0's. Also a(n)=1 iff n = 2^m - 1.
a(n) = a(floor(n/2)) * (n mod 2) for n>0 with a(0)=1. - Reinhard Zumkeller, Aug 02 2002 [Corrected by Mikhail Kurkov, Jul 16 2019]
Sum_{n>=0} 1/10^(2^n) = 0.110100010000000100000000000000010...
1 if n=0, floor(log_2(n+1)) - floor(log_2(n)) otherwise. G.f.: (1/x) * Sum_{k>=0} x^(2^k) = Sum_{k>=0} x^(2^k-1). - Ralf Stephan, Apr 28 2003
a(n) = 1 - A043545(n). - Michael Somos, Aug 25 2003
a(n) = -Sum_{d|n+1} mu(2*d). - Benoit Cloitre, Oct 24 2003
Dirichlet g.f. for right-shifted sequence: 2^(-s)/(1-2^(-s)).
a(n) = A000108(n) mod 2 = A001405(n) mod 2. - Paul Barry, Nov 22 2004
a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n,k)*Sum_{j=0..k} binomial(k, 2^j-1). - Paul Barry, Jun 01 2006
A000523(n+1) = Sum_{k=1..n} a(k). - Mitch Harris, Jul 22 2011
a(n) = A209229(n+1). - Reinhard Zumkeller, Mar 07 2012
a(n) = Sum_{k=1..n} A191898(n,k)*cos(Pi*(n-1)*(k-1))/n; (conjecture). - Mats Granvik, Mar 04 2013
a(n) = A000035(A000108(n)). - Omar E. Pol, Aug 06 2013
a(n) = 1 iff n=2^k-1 for some k, 0 otherwise. - M. F. Hasler, Jun 20 2014
a(n) = ceiling(log_2(n+2)) - ceiling(log_2(n+1)). - Gionata Neri, Sep 06 2015
From John M. Campbell, Jul 21 2016: (Start)
a(n) = (A000168(n-1) mod 2).
a(n) = (A000531(n+1) mod 2).
a(n) = (A000699(n+1) mod 2).
a(n) = (A000891(n) mod 2).
a(n) = (A000913(n-1) mod 2), for n>1.
a(n) = (A000917(n-1) mod 2), for n>0.
a(n) = (A001142(n) mod 2).
a(n) = (A001246(n) mod 2).
a(n) = (A001246(n) mod 4).
a(n) = (A002057(n-2) mod 2), for n>1.
a(n) = (A002430(n+1) mod 2). (End)
a(n) = 2 - A043529(n). - Antti Karttunen, Nov 19 2017
a(n) = floor(1+log(n+1)/log(2)) - floor(log(2n+1)/log(2)). - Adriano Caroli, Sep 22 2019
This is also the decimal expansion of -Sum_{k>=1} mu(2*k)/(10^k - 1), where mu is the Möbius function (A008683). - Amiram Eldar, Jul 12 2020

Extensions

Edited by M. F. Hasler, Jun 20 2014

A120588 G.f. is 1 + x*c(x), where c(x) is the g.f. of the Catalan numbers (A000108).

Original entry on oeis.org

1, 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, 35357670, 129644790, 477638700, 1767263190, 6564120420, 24466267020, 91482563640, 343059613650, 1289904147324, 4861946401452, 18367353072152
Offset: 0

Views

Author

Paul D. Hanna, Jun 16 2006, Jan 24 2008

Keywords

Comments

Previous name was: G.f. satisfies: 3*A(x) = 2 + x + A(x)^2, with A(0) = 1.
This is essentially a duplicate of entry A000108, the Catalan numbers (a(n) = A000108(n-1) for n>0).
In order for the g.f. of an integer sequence to satisfy a functional equation of the form: r*A(x) = c + b*x + A(x)^n, where n > 1, it is necessary that the sequence start with [1, d, m*n*(n-1)/2], where d divides m*n*(n-1)/2 (m>0) and that the coefficients are given by r = n + d^2/m, c = r-1 and b = d^3/m. The remaining terms may then be integer and still satisfy: a_n(k) = r*a(k), where a_n(k) is the k-th term of the n-th self-convolution of the sequence.

Examples

			A(x) = 1 + x + x^2 + 2*x^3 + 5*x^4 + 14*x^5 + 42*x^6 + 132*x^7 +...
A(x)^3 = 1 + 2*x + 3*x^2 + 6*x^3 + 15*x^4 + 42*x^5 + 126*x^6 + 396*x^7 +..
More generally, given the functional equation:
r*A(x) = r-1 + b*x + A(x)^n
the series solution is:
A(x) = Sum_{i>=0} C(n*i,i)/(n*i-i+1)*(r-1+bx)^(n*i-i+1)/r^(n*i+1)
which can be expressed as:
A(x) = G( (r-1+bx)^(n-1)/r^n ) * (r-1+bx)/r
where G(x) satisfies: G(x) = 1 + x*G(x)^n .
Also we have:
A(x) = 1 + Series_Reversion[ (1 + r*x - (1+x)^n )/b ].
		

Crossrefs

Cf. A000108, A120589 (A(x)^2); A120590 - A120607.

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!( (3 - Sqrt(1-4*x))/2 )); // G. C. Greubel, Feb 18 2019
    
  • Mathematica
    a[ n_] := SeriesCoefficient[ 1 + (1 - Sqrt[1 - 4 x]) / 2, {x, 0, n}]; (* Michael Somos, May 18 2015 *)
  • PARI
    {a(n)=local(A=1+x+x^2+x*O(x^n));for(i=0,n,A=A-3*A+2+x+A^2);polcoeff(A,n)}
    
  • PARI
    {a(n) = my(A); if( n<1, n==0, A = vector(n); A[1] = 1; for( k=2, n, A[k] = sum( j=1, k-1, A[j] * A[k-j])); A[n])} /* Michael Somos, Jul 23 2011 */
    
  • Sage
    ((3-sqrt(1-4*x))/2).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Feb 18 2019

Formula

G.f.: A(x) = 1 + Series_Reversion(1+3*x - (1+x)^2).
Lagrange Inversion yields g.f.: A(x) = Sum_{n>=0} C(2*n,n)/(n+1)*(2+x)^(n+1)/3^(2*n+1).
G.f.: (3 - sqrt(1-4*x))/2. - Maksym Voznyy (voznyy(AT)mail.ru), Aug 11 2009
a(n) = Sum_{k=1..n-1} a(k) * a(n-k) if n>1. - Michael Somos, Jul 23 2011
G.f.: 2 - G(0), where G(k)= 2*x*(2*k+1) + k +1 - 2*x*(k+1)*(2*k+3)/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Jul 14 2013
G.f.: 2 - G(0), where G(k)= 1 - x/G(k+1) ; (continued fraction). - Sergei N. Gladkovskii, Jul 19 2013
a(n) ~ 2^(2*n-2)/(sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Aug 19 2013
Given g.f. A(x), A001850(n-1) = coefficient of x^n in A(x)^n if n>0, the derivative of log(A(x)) is the g.f. for A026641. - Michael Somos, May 18 2015
A(x) = (1 + 2*Sum_{n >= 1} Catalan(n)*x^n)/(1 + Sum_{n >= 1} Catalan(n)*x^n) = (1 + 3/2*Sum_{n >= 1} binomial(2*n,n)*x^n )/(1 + Sum_{n >= 1} binomial(2*n,n)*x^n). - Peter Bala, Sep 01 2016
D-finite with recurrence n*a(n) +2*(-2*n+3)*a(n-1)=0. - R. J. Mathar, Nov 22 2024

Extensions

New name by Wolfdieter Lang, Feb 06 2020

A072547 Main diagonal of the array in which first column and row are filled alternatively with 1's or 0's and then T(i,j) = T(i-1,j) + T(i,j-1).

Original entry on oeis.org

1, 0, 2, 6, 22, 80, 296, 1106, 4166, 15792, 60172, 230252, 884236, 3406104, 13154948, 50922986, 197519942, 767502944, 2987013068, 11641557716, 45429853652, 177490745984, 694175171648, 2717578296116, 10648297329692, 41757352712480
Offset: 1

Views

Author

Benoit Cloitre, Aug 05 2002

Keywords

Comments

A Catalan transform of A078008 under the mapping g(x)->g(xc(x)). - Paul Barry, Nov 13 2004
Number of positive terms in expansion of (x_1 + x_2 + ... + x_{n-1} - x_n)^n. - Sergio Falcon, Feb 08 2007
Hankel transform is A088138(n+1). - Paul Barry, Feb 17 2009
Without the beginning "1", we obtain the first diagonal over the principal diagonal of the array notified by B. Cloitre in A026641 and used by R. Choulet in A172025, and from A172061 to A172066. - Richard Choulet, Jan 25 2010
Also central terms of triangles A108561 and A112465. - Reinhard Zumkeller, Jan 03 2014
With offset 0 and for p prime, the p-th term is divisible by p. - F. Chapoton, Dec 03 2021

Examples

			The array begins:
  1 0 1 0 1..
  0 0 1 1 2..
  1 1 2 3 5..
  0 1 3 6 11..
so sequence begins : 1, 0, 2, 6, ...
		

References

  • L. W. Shapiro and C. J. Wang, Generating identities via 2 X 2 matrices, Congressus Numerantium, 205 (2010), 33-46.

Crossrefs

Programs

  • Haskell
    a072547 n = a108561 (2 * (n - 1)) (n - 1)
    -- Reinhard Zumkeller, Jan 03 2014
    
  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( x*(1 + Sqrt(1-4*x))/(Sqrt(1-4*x)*(3-Sqrt(1-4*x))) )); // G. C. Greubel, Feb 17 2019
    
  • Maple
    taylor( (2/(3*sqrt(1-4*z)-1+4*z))*((1-sqrt(1-4*z))/(2*z))^(-1),z=0,42); for n from -1 to 40 do a(n):=sum('(-1)^(p)*binomial(2n-p+1,1+n-p)',p=0..n+1): od:seq(a(n),n=-1..40):od; # Richard Choulet, Jan 25 2010
  • Mathematica
    CoefficientList[Series[(2/(3*Sqrt[1-4*x]-1+4*x))*((1-Sqrt[1-4*x]) /(2*x))^(-1), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 13 2014 *)
    a[n_] := Binomial[2 n - 2, n] Hypergeometric2F1[1, 2 - n, n + 1, 1/2] / 2 + (-2)^(1 - n); Table[a[n], {n, 1, 26}] (* Peter Luschny, Dec 03 2021 *)
  • PARI
    a(n) = (-1)^n*sum(k=0, n, binomial(-n, k));
    vector(100, n, a(n-1)) \\ Altug Alkan, Oct 02 2015
    
  • Sage
    a=(x*(1+sqrt(1-4*x))/(sqrt(1-4*x)*(3-sqrt(1-4*x)))).series(x, 30).coefficients(x, sparse=False); a[1:] # G. C. Greubel, Feb 17 2019

Formula

If offset is 0, a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n+k-1, k). - Vladeta Jovovic, Feb 18 2003
G.f.: x*(1-x*C)/(1-2*x*C)/(1+x*C), where C = (1-sqrt(1-4*x))/(2*x) is g.f. for Catalan numbers (A000108). - Vladeta Jovovic, Feb 18 2003
a(n) = Sum_{j=0..floor((n-1)/2)} binomial(2*n-2*j-4, n-3). - Emeric Deutsch, Jan 28 2004
a(n) = A108561(2*(n-1),n-1). - Reinhard Zumkeller, Jun 10 2005
a(n) = (-1)^n*Sum_{k=0..n} binomial(-n,k) (offset 0). - Paul Barry, Feb 17 2009
Other form of the G.f: f(z) = (2/(3*sqrt(1-4*z) -1 +4*z))*((1 -sqrt(1-4*z))/(2*z))^(-1). - Richard Choulet, Jan 25 2010
D-finite with recurrence 2*(-n+1)*a(n) + (9*n-17)*a(n-1) + (-3*n+19)*a(n-2) + 2*(-2*n+7)*a(n-3) = 0. - R. J. Mathar, Nov 30 2012
From Peter Bala, Oct 01 2015: (Start)
a(n) = [x^n] ((1 - x)^2/(1 - 2*x))^n.
Exp( Sum_{n >= 1} a(n+1)*x^n/n ) = 1 + x^2 + 2*x^3 + 6*x^4 + 18*x^5 + ... is the o.g.f for A000957. (End)
a(n) = binomial(2*n-2, n)*hypergeom([1, 2-n], [n+1], 1/2) / 2 + (-2)^(1-n). - Peter Luschny, Dec 03 2021
a(n) = 2 * A014301(n-1) for n>=3. - Alois P. Heinz, Dec 27 2023

Extensions

Corrected and extended by Vladeta Jovovic, Feb 17 2003

A126093 Inverse binomial matrix applied to A110877.

Original entry on oeis.org

1, 0, 1, 1, 2, 1, 2, 6, 4, 1, 6, 18, 15, 6, 1, 18, 57, 54, 28, 8, 1, 57, 186, 193, 118, 45, 10, 1, 186, 622, 690, 474, 218, 66, 12, 1, 622, 2120, 2476, 1856, 976, 362, 91, 14, 1, 2120, 7338, 8928, 7164, 4170, 1791, 558, 120, 16, 1
Offset: 0

Views

Author

Philippe Deléham, Mar 03 2007

Keywords

Comments

Diagonal sums are A065601. - Philippe Deléham, Mar 05 2007
This triangle belongs to the family of triangles defined by: T(0,0)=1, T(n,k)=0 if k<0 or if k>n, T(n,0) = x*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + y*T(n-1,k) + T(n-1,k+1) for k>=1 . Other triangles arise by choosing different values for (x,y): (0,0) -> A053121; (0,1) -> A089942; (0,2) -> A126093; (0,3) -> A126970; (1,0)-> A061554; (1,1) -> A064189; (1,2) -> A039599; (1,3) -> A110877; (1,4) -> A124576; (2,0) -> A126075; (2,1) -> A038622; (2,2) -> A039598; (2,3) -> A124733; (2,4) -> A124575; (3,0) -> A126953; (3,1) -> A126954; (3,2) -> A111418; (3,3) -> A091965; (3,4) -> A124574; (4,3) -> A126791; (4,4) -> A052179; (4,5) -> A126331; (5,5) -> A125906. - Philippe Deléham, Sep 25 2007

Examples

			Triangle begins:
     1;
     0,    1;
     1,    2,    1;
     2,    6,    4,    1;
     6,   18,   15,    6,    1;
    18,   57,   54,   28,    8,    1;
    57,  186,  193,  118,   45,   10,   1;
   186,  622,  690,  474,  218,   66,  12,   1;
   622, 2120, 2476, 1856,  976,  362,  91,  14,  1;
  2120, 7338, 8928, 7164, 4170, 1791, 558, 120, 16, 1;
Production matrix begins
  0, 1;
  1, 2, 1;
  0, 1, 2, 1;
  0, 0, 1, 2, 1;
  0, 0, 0, 1, 2, 1;
  0, 0, 0, 0, 1, 2, 1;
  0, 0, 0, 0, 0, 1, 2, 1;
  0, 0, 0, 0, 0, 0, 1, 2, 1;
  0, 0, 0, 0, 0, 0, 0, 1, 2, 1;
- _Philippe Deléham_, Nov 07 2011
		

Programs

  • Mathematica
    T[0, 0, x_, y_]:= 1; T[n_, 0, x_, y_]:= x*T[n-1,0,x,y] + T[n-1,1,x,y]; T[n_, k_, x_, y_]:= T[n, k, x, y]= If[k<0 || k>n, 0, T[n-1,k-1,x,y] + y*T[n-1,k,x,y] + T[n-1,k+1,x,y]]; Table[T[n,k,0,2], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 21 2017 *)
  • Sage
    @CachedFunction
    def T(n, k, x, y):
        if (k<0 or k>n): return 0
        elif (n==0 and k==0): return 1
        elif (k==0): return x*T(n-1,0,x,y) + T(n-1,1,x,y)
        else: return T(n-1,k-1,x,y) + y*T(n-1,k,x,y) + T(n-1,k+1,x,y)
    [[T(n,k,0,2) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Jan 27 2020

Formula

Triangle T(n,k), 0<=k<=n, read by rows defined by : T(0,0)=1, T(n,k)=0 if k<0 or if k>n, T(n,0) = T(n-1,1), T(n,k) = T(n-1,k-1) + 2*T(n-1,k) + T(n-1,k+1) for k>=1.
Sum_{k=0..n} T(m,k)*T(n,k) = T(m+n,0) = A000957(m+n+1).
Sum_{k=0..n-1} T(n,k) = A026641(n), for n>=1. - Philippe Deléham, Mar 05 2007
Sum_{k=0..n} T(n,k)*(3k+1) = 4^n. - Philippe Deléham, Mar 22 2007

A059260 Triangle read by rows giving coefficient T(i,j) of x^i y^j in 1/(1-y-x*y-x^2) = 1/((1+x)(1-x-y)) for (i,j) = (0,0), (1,0), (0,1), (2,0), (1,1), (0,2), ...

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 0, 2, 2, 1, 1, 2, 4, 3, 1, 0, 3, 6, 7, 4, 1, 1, 3, 9, 13, 11, 5, 1, 0, 4, 12, 22, 24, 16, 6, 1, 1, 4, 16, 34, 46, 40, 22, 7, 1, 0, 5, 20, 50, 80, 86, 62, 29, 8, 1, 1, 5, 25, 70, 130, 166, 148, 91, 37, 9, 1, 0, 6, 30, 95, 200, 296, 314, 239, 128, 46, 10, 1
Offset: 0

Views

Author

N. J. A. Sloane, Jan 23 2001

Keywords

Comments

Coefficients of the (left, normalized) shifted cyclotomic polynomial. Or, coefficients of the basic n-th q-series for q=-2. Indeed, let Y_n(x) = Sum_{k=0..n} x^k, having as roots all the n-th roots of unity except for 0; then coefficients in x of (-1)^n Y_n(-x-1) give exactly the n-th row of A059260 and a practical way to compute it. - Olivier Gérard, Jul 30 2002
The maximum in the (2n)-th row is T(n,n), which is A026641; also T(n,n) ~ (2/3)*binomial(2n,n). The maximum in the (2n-1)-th row is T(n-1,n), which is A014300 (but T does not have the same definition as in A026637); also T(n-1,n) ~ (1/3)*binomial(2n,n). Here is a generalization of the formula given in A026641: T(i,j) = Sum_{k=0..j} binomial(i+k-x,j-k)*binomial(j-k+x,k) for all x real (the proof is easy by induction on i+j using T(i,j) = T(i-1,j) + T(i,j-1)). - Claude Morin, May 21 2002
The second greatest term in the (2n)-th row is T(n-1,n+1), which is A014301; the second greatest term in the (2n+1)-th row is T(n+1,n) = 2*T(n-1,n+1), which is 2*A014301. - Claude Morin
Diagonal sums give A008346. - Paul Barry, Sep 23 2004
Riordan array (1/(1-x^2), x/(1-x)). As a product of Riordan arrays, factors into the product of (1/(1+x),x) and (1/(1-x),1/(1-x)) (binomial matrix). - Paul Barry, Oct 25 2004
Signed version is A239473 with relations to partial sums of sequences. - Tom Copeland, Mar 24 2014
From Robert Coquereaux, Oct 01 2014: (Start)
Columns of the triangle (cf. Example below) give alternate partial sums along nw-se diagonals of the Pascal triangle, i.e., sequences A000035, A004526, A002620 (or A087811), A002623 (or A173196), A001752, A001753, A001769, A001779, A001780, A001781, A001786, A001808, etc.
The dimension of the space of closed currents (distributional forms) of degree p on Gr(n), the Grassmann algebra with n generators, equivalently, the dimension of the space of Gr(n)-valued symmetric multilinear forms with vanishing graded divergence, is V(n,p) = 2^n T(p,n-1) - (-1)^p.
If p is odd V(n,p) is also the dimension of the cyclic cohomology group of order p of the Z2 graded algebra Gr(n).
If p is even the dimension of this cohomology group is V(n,p)+1.
Cf. A193844. (End)
From Peter Bala, Feb 07 2024: (Start)
The following remarks assume the row indexing starts at n = 1.
The sequence of row polynomials R(n,x), beginning R(1,x) = 1, R(2,x) = x, R(3,x) = 1 + x + x^2 , ..., is a strong divisibility sequence of polynomials in the ring Z[x]; that is, for all positive integers n and m, poly_gcd( R(n,x), R(m,x)) = R(gcd(n, m), x) - apply Norfleet (2005), Theorem 3. Consequently, the polynomial sequence {R(n,x): n >= 1} is a divisibility sequence; that is, if n divides m then R(n,x) divides R(m,x) in Z[x]. (End)
From Miquel A. Fiol, Oct 04 2024: (Start)
For j>=1, T(i,j) is the independence number of the (i-j)-supertoken graph FF_(i-j)(S_j) of the star graph S_j with j points.
(Given a graph G on n vertices and an integer k>=1, the k-supertoken (or reduced k-th power) FF_k(G) of G has vertices representing configurations of k indistinguishable tokens in the (not necessarily different) vertices of G, with two configurations being adjacent if one can be obtained from the other by moving one token along an edge. See an example below.)
Following the suggestion of Peter Munn, the k-supertoken graph FF_k(S_j) can also be defined as follows: Consider the Lattice graph L(k,j), whose vertices are the k^j j-vectors with elements in the set {0,..,k-1}, two being adjacent if they differ in just one coordinate by one unity. Then, FF_k(S_j) is the subgraph of L(k+1,j) induced by the vertices at distance at most k from (0,..,0). (End)

Examples

			Triangle begins
  1;
  0,  1;
  1,  1,  1;
  0,  2,  2,  1;
  1,  2,  4,  3,  1;
  0,  3,  6,  7,  4,  1;
  1,  3,  9, 13, 11,  5,  1;
  0,  4, 12, 22, 24, 16,  6,  1;
  1,  4, 16, 34, 46, 40, 22,  7,  1;
  0,  5, 20, 50, 80, 86, 62, 29,  8,  1;
Sequences obtained with _Miquel A. Fiol_'s Sep 30 2024 formula of A(n,c1,c2) for other values of (c1,c2). (In the table, rows are indexed by c1=0..6 and columns by c2=0..6):
A000007  A000012  A000027  A025747  A000292* A000332* A000389*
A059841  A008619  A087811* A002623  A001752  A001753  A001769
A193356  A008794* A005993  A005994  -------  -------  -------
-------  -------  -------  A005995  A018210  -------  A052267
-------  -------  -------  -------  A018211  A018212  -------
-------  -------  -------  -------  -------  A018213  A018214
-------  -------  -------  -------  -------  -------  A062136
*requires offset adjustment.
The 2-supertoken FF_2(S_3) of the star graph S_3 with central vertex 1 and peripheral vertices 2,3,4. (The vertex `ij' of FF_2(S_3) represents the configuration of one token in `ì' and the other token in `j'). The T(5,3)=7 independent vertices are 22, 24, 44, 23, 11, 34, and 33.
     22--12---24---14---44
          | \    / |
         23   11   34
            \  |  /
              13
               |
              33
		

Crossrefs

Cf. A059259. Row sums give A001045.
Seen as a square array read by antidiagonals this is the coefficient of x^k in expansion of 1/((1-x^2)*(1-x)^n) with rows A002620, A002623, A001752, A001753, A001769, A001779, A001780, A001781, A001786, A001808 etc. (allowing for signs). A058393 would then effectively provide the table for nonpositive n. - Henry Bottomley, Jun 25 2001

Programs

  • Maple
    read transforms; 1/(1-y-x*y-x^2); SERIES2(%,x,y,12); SERIES2TOLIST(%,x,y,12);
  • Mathematica
    t[n_, k_] := Sum[ (-1)^(n-j)*Binomial[j, k], {j, 0, n}]; Flatten[ Table[t[n, k], {n, 0, 12}, {k, 0, n}]] (* Jean-François Alcover, Oct 20 2011, after Paul Barry *)
  • PARI
    T(n, k) = sum(j=0, n, (-1)^(n - j)*binomial(j, k));
    for(n=0, 12, for(k=0, n, print1(T(n, k),", ");); print();) \\ Indranil Ghosh, Apr 11 2017
    
  • Python
    from sympy import binomial
    def T(n, k): return sum((-1)**(n - j)*binomial(j, k) for j in range(n + 1))
    for n in range(13): print([T(n, k) for k in range(n + 1)]) # Indranil Ghosh, Apr 11 2017
  • Sage
    def A059260_row(n):
        @cached_function
        def prec(n, k):
            if k==n: return 1
            if k==0: return 0
            return -prec(n-1,k-1)-sum(prec(n,k+i-1) for i in (2..n-k+1))
        return [(-1)^(n-k+1)*prec(n+1, n-k+1) for k in (1..n)]
    for n in (1..9): print(A059260_row(n)) # Peter Luschny, Mar 16 2016
    

Formula

G.f.: 1/(1-y-x*y-x^2) = 1 + y + x^2 + xy + y^2 + 2x^2y + 2xy^2 + y^3 + ...
E.g.f: (exp(-t)+(x+1)*exp((x+1)*t))/(x+2). - Tom Copeland, Mar 19 2014
O.g.f. (n-th row): ((-1)^n+(x+1)^(n+1))/(x+2). - Tom Copeland, Mar 19 2014
T(i, 0) = 1 if i is even or 0 if i is odd, T(0, i) = 1 and otherwise T(i, j) = T(i-1, j) + T(i, j-1); also T(i, j) = Sum_{m=j..i+j} (-1)^(i+j+m)*binomial(m, j). - Robert FERREOL, May 17 2002
T(i, j) ~ (i+j)/(2*i+j)*binomial(i+j, j); more precisely, abs(T(i, j)/binomial(i+j, j) - (i+j)/(2*i+j) )<=1/(4*(i+j)-2); the proof is by induction on i+j using the formula 2*T(i, j) = binomial(i+j, j)+T(i, j-1). - Claude Morin, May 21 2002
T(n, k) = Sum_{j=0..n} (-1)^(n-j)binomial(j, k). - Paul Barry, Aug 25 2004
T(n, k) = Sum_{j=0..n-k} binomial(n-j, j)*binomial(j, n-k-j). - Paul Barry, Jul 25 2005
Equals A097807 * A007318. - Gary W. Adamson, Feb 21 2007
Equals A128173 * A007318 as infinite lower triangular matrices. - Gary W. Adamson, Feb 17 2007
Equals A130595*A097805*A007318 = (inverse Pascal matrix)*(padded Pascal matrix)*(Pascal matrix) = A130595*A200139. Inverse is A097808 = A130595*(padded A130595)*A007318. - Tom Copeland, Nov 14 2016
T(i, j) = binomial(i+j, j)-T(i-1, j). - Laszlo Major, Apr 11 2017
Recurrence for row polynomials (with row indexing starting at n = 1): R(n,x) = x*R(n-1,x) + (x + 1)*R(n-2,x) with R(1,x) = 1 and R(2,x) = x. - Peter Bala, Feb 07 2024
From Miquel A. Fiol, Sep 30 2024: (Start)
The triangle can be seen as a slice of a 3-dimensional table that links it to well-known sequences as follows.
The j-th column of the triangle, T(i,j) for i >= j, equals A(n,c1,c2) = Sum_{k=0..floor(n/2)} binomial(c1+2*k-1,2*k)*binomial(c2+n-2*k-1,n-2*k) when c1=1, c2=j, and n=i-j.
This gives T(i,j) = Sum_{k=0..floor((i-j)/2)} binomial(i-2*k-1, j-1). For other values of (c1,c2), see the example below. (End)

Extensions

Formula corrected by Philippe Deléham, Jan 11 2014

A059259 Triangle read by rows giving coefficient T(i,j) of x^i y^j in 1/(1-x-x*y-y^2) = 1/((1+y)(1-x-y)) for (i,j) = (0,0), (1,0), (0,1), (2,0), (1,1), (0,2), ...

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 1, 2, 2, 0, 1, 3, 4, 2, 1, 1, 4, 7, 6, 3, 0, 1, 5, 11, 13, 9, 3, 1, 1, 6, 16, 24, 22, 12, 4, 0, 1, 7, 22, 40, 46, 34, 16, 4, 1, 1, 8, 29, 62, 86, 80, 50, 20, 5, 0, 1, 9, 37, 91, 148, 166, 130, 70, 25, 5, 1, 1, 10, 46, 128, 239, 314, 296, 200
Offset: 0

Views

Author

N. J. A. Sloane, Jan 23 2001

Keywords

Comments

This sequence provides the general solution to the recurrence a(n) = a(n-1) + k*(k+1)*a(n-2), a(0)=a(1)=1. The solution is (1, 1, k^2 + k + 1, 2*k^2 + 2*k + 1, ...) whose coefficients can be read from the rows of the triangle. The row sums of the triangle are given by the case k=1. These are the Jacobsthal numbers, A001045. Viewed as a square array, its first row is (1,0,1,0,1,...) with e.g.f. cosh(x), g.f. 1/(1-x^2) and subsequent rows are successive partial sums given by 1/((1-x)^n * (1-x^2)). - Paul Barry, Mar 17 2003
Conjecture: every second column of this triangle is identical to a column in the square array A071921. For example, column 4 of A059259 (1, 3, 9, 22, 46, ...) appears to be the same as column 3 of A071921; column 6 of A059259 (1, 4, 16, 50, 130, 296, ...) appears to be the same as column 4 of A071921; and in general column 2k of A059259 appears to be the same as column k+1 of A071921. Furthermore, since A225010 is a transposition of A071921 (ignoring the latter's top row and two leftmost columns), there appears to be a correspondence between column 2k of A059259 and row k of A225010. - Mathew Englander, May 17 2014
T(n,k) is the number of n-tilings of a (one-dimensional) board that use k (1,1)-fence tiles and n-k squares. A (1,1)-fence is a tile composed of two pieces of width 1 separated by a gap of width 1. - Michael A. Allen, Jun 25 2020
See the Edwards-Allen 2020 paper, page 14, for proof of Englander's conjecture. - Michael De Vlieger, Dec 10 2020

Examples

			Triangle begins:
  1;
  1,  0;
  1,  1,  1;
  1,  2,  2,   0;
  1,  3,  4,   2,   1;
  1,  4,  7,   6,   3,   0;
  1,  5, 11,  13,   9,   3,   1;
  1,  6, 16,  24,  22,  12,   4,   0;
  1,  7, 22,  40,  46,  34,  16,   4,  1;
  1,  8, 29,  62,  86,  80,  50,  20,  5,  0;
  1,  9, 37,  91, 148, 166, 130,  70, 25,  5, 1;
  1, 10, 46, 128, 239, 314, 296, 200, 95, 30, 6, 0;
...
		

Crossrefs

See A059260 for an explicit formula.
Diagonals of this triangle are given by A006498.
Similar to the triangles A035317, A080242, A108561, A112555.

Programs

  • Maple
    read transforms; 1/(1-x-x*y-y^2); SERIES2(%,x,y,12); SERIES2TOLIST(%,x,y,12);
  • Mathematica
    T[n_, 0]:= 1; T[n_, n_]:= (1+(-1)^n)/2; T[n_, k_]:= T[n, k] = T[n-1, k] + T[n-1, k-1]; Table[T[n, k], {n, 0, 10} , {k, 0, n}]//Flatten (* G. C. Greubel, Jan 03 2017 *)
  • PARI
    {T(n,k) = if(k==0, 1, if(k==n, (1+(-1)^n)/2, T(n-1,k) +T(n-1,k-1)) )};
    for(n=0,10, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Apr 29 2019
  • Sage
    def A059259_row(n):
        @cached_function
        def prec(n, k):
            if k==n: return (-1)^n
            if k==0: return 0
            return prec(n-1,k-1)-sum(prec(n,k+i-1) for i in (2..n-k+1))
        return [(-1)^(n-k+1)*prec(n+1, k) for k in (1..n)]
    for n in (1..12): print(A059259_row(n)) # Peter Luschny, Mar 16 2016
    

Formula

G.f.: 1/(1 - x - x*y - y^2).
As a square array read by antidiagonals, this is T(n, k) = Sum_{i=0..n} (-1)^(n-i)*C(i+k, k). - Paul Barry, Jul 01 2003
T(2*n,n) = A026641(n). - Philippe Deléham, Mar 08 2007
T(n,k) = T(n-1,k) + T(n-2,k-1) + T(n-2,k-2), T(0,0) = T(1,0) = T(2,0) = T(2,1) = T(2,2)=1, T(1,1)=0, T(n,k)=0 if k < 0 or if k > n. - Philippe Deléham, Nov 24 2013
T(n,0) = 1, T(n,n) = (1+(-1)^n)/2, and T(n,k) = T(n-1,k) + T(n-1,k-1) for 0 < k < n. - Mathew Englander, May 24 2014
From Michael A. Allen, Jun 25 2020: (Start)
T(n,k) + T(n-1,k-1) = binomial(n,k) if n >= k > 0.
T(2*n-1,2*n-2) = T(2*n,2*n-1) = n, T(2*n,2*n-2) = n^2, T(2*n+1,2*n-1) = n*(n+1) for n > 0.
T(n,2) = binomial(n-2,2) + n - 1 for n > 1 and T(n,3) = binomial(n-3,3) + 2*binomial(n-2,2) for n > 2.
T(2*n-k,k) = A123521(n,k). (End)
Showing 1-10 of 61 results. Next