cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A133158 Binomial transform of A126568, second binomial transform of A026641.

Original entry on oeis.org

1, 3, 12, 57, 294, 1578, 8658, 48177, 270774, 1533450, 8736432, 50016090, 287497380, 1658174352, 9591422286, 55618701057, 323225066790, 1882009941570, 10976834700792, 64119701075886, 375057555388884, 2196539772794172, 12878508015774468
Offset: 0

Views

Author

Philippe Deléham, Oct 08 2007

Keywords

Comments

The Hankel transform of this sequence is 3^n (see A000244).

Crossrefs

Row sums of triangle in A124575.

Programs

  • Mathematica
    CoefficientList[Series[(1 + 3*Sqrt[-1 + 2*x] / Sqrt[-1 + 6*x])/(4 - 6*x), {x, 0, 20}], x] (* Vaclav Kotesovec, Nov 02 2023 *)

Formula

Conjecture: 2*n*a(n) + (-19*n+12)*a(n-1) + 6*(8*n-11)*a(n-2) + 36*(-n+2)*a(n-3) = 0. - R. J. Mathar, Jun 30 2013
a(n) ~ 2^(n + 1/2) * 3^(n - 1/2) / sqrt(Pi*n). - Vaclav Kotesovec, Nov 02 2023

A110877 Triangle T(n,k), 0 <= k <= n, read by rows, defined by: T(0,0) = 1, T(n,k) = 0 if n= 1: T(n,k) = T(n-1,k-1) + x*T(n-1,k) + T(n-1,k+1) with x = 3.

Original entry on oeis.org

1, 1, 1, 2, 4, 1, 6, 15, 7, 1, 21, 58, 37, 10, 1, 79, 232, 179, 68, 13, 1, 311, 954, 837, 396, 108, 16, 1, 1265, 4010, 3861, 2133, 736, 157, 19, 1, 5275, 17156, 17726, 10996, 4498, 1226, 215, 22, 1, 22431, 74469, 81330, 55212, 25716, 8391, 1893
Offset: 0

Views

Author

Philippe Deléham, Sep 19 2005

Keywords

Comments

Similar to A064189 (x = 1) and to A039599 (x = 2).
This triangle belongs to the family of triangles defined by: T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,0) = x*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + y*T(n-1,k) + T(n-1,k+1) for k >= 1. Other triangles arise by choosing different values for (x,y): (0,0) -> A053121; (0,1) -> A089942; (0,2) -> A126093; (0,3) -> A126970; (1,0)-> A061554; (1,1) -> A064189; (1,2) -> A039599; (1,3) -> A110877; (1,4) -> A124576; (2,0) -> A126075; (2,1) -> A038622; (2,2) -> A039598; (2,3) -> A124733; (2,4) -> A124575; (3,0) -> A126953; (3,1) -> A126954; (3,2) -> A111418; (3,3) -> A091965; (3,4) -> A124574; (4,3) -> A126791; (4,4) -> A052179; (4,5) -> A126331; (5,5) -> A125906. - Philippe Deléham, Sep 25 2007
Row sums yield A126568. - Philippe Deléham, Oct 10 2007
5^n = (n-th row terms) dot (first n+1 terms in the series (1, 4, 7, 10, ...)). Example for row 4: 5^4 = 625 = (21, 58, 37, 10, 1) dot (1, 4, 7, 10, 13) = (21 + 232 + 259 + 100 + 13). - Gary W. Adamson, Jun 15 2011
Riordan array (2/(1+x+sqrt(1-6*x+5*x^2)), (1-3*x-sqrt(1-6*x+5*x^2))/(2*x)). - Philippe Deléham, Mar 04 2013

Examples

			Triangle begins:
      1;
      1,     1;
      2,     4,     1;
      6,    15,     7,     1;
     21,    58,    37,    10,     1;
     79,   232,   179,    68,    13,    1;
    311,   954,   837,   396,   108,   16,    1;
   1265,  4010,  3861,  2133,   736,  157,   19,   1;
   5275, 17156, 17726, 10996,  4498, 1226,  215,  22,  1;
  22431, 74469, 81330, 55212, 25716, 8391, 1893, 282, 25, 1;
  ...
From _Philippe Deléham_, Nov 07 2011: (Start)
Production matrix begins:
  1, 1;
  1, 3, 1;
  0, 1, 3, 1;
  0, 0, 1, 3, 1;
  0, 0, 0, 1, 3, 1;
  0, 0, 0, 0, 1, 3, 1;
  0, 0, 0, 0, 0, 1, 3, 1;
  0, 0, 0, 0, 0, 0, 1, 3, 1;
  0, 0, 0, 0, 0, 0, 0, 1, 3, 1;
  ... (End)
		

Crossrefs

The inverse of A126126.

Programs

  • Maple
    A110877 := proc(n,k)
        if k > n then
            0;
        elif n= 0 then
            1;
        elif k = 0 then
            procname(n-1,0)+procname(n-1,1) ;
        else
            procname(n-1,k-1)+3*procname(n-1,k)+procname(n-1,k+1) ;
        end if;
    end proc: # R. J. Mathar, Sep 06 2013
  • Mathematica
    T[0, 0, x_, y_] := 1; T[n_, 0, x_, y_] := x*T[n - 1, 0, x, y] + T[n - 1, 1, x, y]; T[n_, k_, x_, y_] := T[n, k, x, y] = If[k < 0 || k > n, 0, T[n - 1, k - 1, x, y] + y*T[n - 1, k, x, y] + T[n - 1, k + 1, x, y]]; Table[T[n, k, 1, 3], {n, 0, 49}, {k, 0, n}] // Flatten (* G. C. Greubel, Apr 21 2017 *)

Formula

T(n, 0) = A033321(n) and for k >= 1: T(n, k) = Sum_{j>=1} T(n-j, k-1)*A002212(j).
Sum_{k=0..n} T(m, k)*T(n, k) = T(m+n, 0) = A033321(m+n).
The triangle may also be generated from M^n * [1,0,0,0,...], where M = an infinite tridiagonal matrix with 1's in the super and subdiagonals and (1,3,3,3,...) in the main diagonal. - Gary W. Adamson, Dec 17 2006
Sum_{k=0..n} T(n,k)*(3*k+1) = 5^n. - Philippe Deléham, Feb 26 2007
Sum_{k=0..n} T(n,k) = A126568(n). - Philippe Deléham, Oct 10 2007

A126569 Top-left "head" entry of the n-th power of the E8 Cartan matrix.

Original entry on oeis.org

1, 2, 5, 14, 42, 132, 430, 1444, 4981, 17594, 63442, 232828, 867146, 3269060, 12446684, 47771496, 184544427, 716658870, 2794956099, 10938266562, 42930256917, 168890693650, 665739119129, 2628578437646, 10393091551794, 41141896235012, 163028816478833
Offset: 0

Views

Author

Gary W. Adamson, Dec 28 2006

Keywords

Examples

			a(6) = 430 = leftmost term in M^6 * [1,0,0,0,0,0,0,0].
		

Crossrefs

Programs

  • Maple
    E8 := matrix(8,8,[ [2, -1, 0, 0, 0, 0, 0, 0 ], [ -1, 2, -1, 0, 0, 0, 0, 0 ], [ 0, -1, 2, -1, 0, 0, 0, -1 ], [ 0, 0, -1, 2, -1, 0, 0, 0 ], [ 0, 0, 0, -1, 2, -1, 0, 0 ], [ 0, 0, 0, 0, -1, 2, -1, 0 ], [ 0, 0, 0, 0, 0, -1, 2, 0 ], [ 0, 0, -1, 0, 0, 0, 0, 2 ] ]) ;
    printf("1,") ; for n from 1 to 20 do T := evalm(E8^n) ; printf("%a,", T[1,1]) ; od: # R. J. Mathar, May 08 2009

Formula

a(n) = leftmost term in M^n * [1,0,0,0,0,0,0,0], where M = the 8x8 matrix [2,-1,0,0,0,0,0,0; -1,2,-1,0,0,0,0,0; 0,-1,2,-1,0,0,0,-1; 0,0,-1,2,-1,0,0,0; 0,0,0,-1,2,-1,0,0; 0,0,0,0,-1,2,-1,0; 0,0,0,0,0,-1,2,0; 0,0,-1,0,0,0,0,2].
a(n) = 16*a(n-1)-105*a(n-2)+364*a(n-3)-714*a(n-4)+784*a(n-5)-440*a(n-6)+96*a(n-7) -a(n-8). - R. J. Mathar, May 08 2009 [Corrected by Georg Fischer, Mar 12 2020]
G.f.: -(2*x-1)*(2*x^2-4*x+1)*(x^4-16*x^3+20*x^2-8*x+1) / (1-16*x +105*x^2 -364*x^3+714*x^4-784*x^5+440*x^6-96*x^7+x^8). - R. J. Mathar, May 08 2009

Extensions

Edited by R. J. Mathar, May 08 2009

A126567 Sequence generated from the E6 Cartan matrix.

Original entry on oeis.org

1, 2, 5, 14, 42, 132, 430, 1444, 4981, 17594, 63441, 232806, 866870, 3266460, 12426210, 47629020, 183638729, 711285170, 2764753405, 10775740030, 42086252770, 164635420788, 644811687734, 2527808259668, 9916569410301, 38923511495402, 152841133694345, 600349070362454
Offset: 0

Views

Author

Gary W. Adamson, Dec 28 2006

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := (MatrixPower[{{2, -1, 0, 0, 0, 0}, {-1, 2, -1, 0, 0, 0}, {0, -1, 2, -1, 0, -1}, {0, 0, -1, 2, -1, 0}, {0, 0, 0, -1, 2, 0}, {0, 0, -1, 0, 0, 2}}, n].{1, 0, 0, 0, 0, 0})[[1]]; Table[ f@n, {n, 0, 25}] (* Robert G. Wilson v, Aug 07 2007 *)
  • PARI
    a(n) = ([2,-1,0,0,0,0; -1,2,-1,0,0,0; 0,-1,2,-1,0,-1; 0,0,-1,2,-1,0; 0,0,0,-1,2,0; 0,0,-1,0,0,2]^n)[1,1]; \\ Michel Marcus, Jan 30 2023

Formula

Let M = [2,-1,0,0,0,0; -1,2,-1,0,0,0; 0,-1,2,-1,0,-1; 0,0,-1,2,-1,0; 0,0,0,-1,2,0; 0,0,-1,0,0,2] then a(n) is the upper left term in M^n.
G.f.: -(2*x-1)*(2*x^4-16*x^3+20*x^2-8*x+1) / ((x-1)*(3*x-1)*(x^4-16*x^3+20*x^2-8*x+1)). - Colin Barker, May 25 2013
a(n) ~ c*(2 + sqrt(2 + sqrt(3)))^n, where c = (3 - sqrt(3))/24. - Stefano Spezia, Jan 29 2023
a(n) = (3^n + 1)/4 + ((3 + sqrt(3))*((2 - sqrt(2 - sqrt(3)))^n + (2 + sqrt(2 - sqrt(3)))^n) + (3 - sqrt(3))*((2 - sqrt(2 + sqrt(3)))^n + (2 + sqrt(2 + sqrt(3)))^n))/24. - Vaclav Kotesovec, Jan 30 2023

Extensions

More terms from Robert G. Wilson v, Aug 07 2007

A171243 Riordan array (f(x), x*g(x)), f(x) is the g.f. of A126952, g(x) is the g.f. of A117641.

Original entry on oeis.org

1, 1, 1, 5, 1, 1, 21, 6, 1, 1, 93, 25, 7, 1, 1, 421, 112, 29, 8, 1, 1, 1937, 510, 132, 33, 9, 1, 1, 9017, 2357, 606, 153, 37, 10, 1, 1, 42349, 11009, 2819, 709, 175, 41, 11, 1, 1, 200277, 51840, 13233, 3324, 819, 198, 45, 12, 1, 1
Offset: 0

Views

Author

Philippe Deléham, Dec 06 2009

Keywords

Comments

Expansion of row sums of T_(x,3), T_(x,y) defined in A039599.
Matrix product P^3 * Q * P^(-3), where P denotes Pascal's triangle A007318 and Q denotes A061554 (formed from P by sorting the rows into descending order). Cf. A158793 and A158815. - Peter Bala, Jul 13 2021

Examples

			Triangle begins:
    1;
    1,   1;
    5,   1,  1;
   21,   6,  1, 1;
   93,  25,  7, 1, 1;
  421, 112, 29, 8, 1, 1;
  ...
		

Crossrefs

Formula

Sum_{k=0..n} T(n,k)*x^k = A126952(n), A126568(n), A026375(n), A026378(n+1), A000351(n) for x = 0,1,2,3,4 respectively.

A171650 Triangle T, read by rows : T(n,k) = A007318(n,k)*A026641(n-k).

Original entry on oeis.org

1, 1, 1, 4, 2, 1, 13, 12, 3, 1, 46, 52, 24, 4, 1, 166, 230, 130, 40, 5, 1, 610, 996, 690, 260, 60, 6, 1, 2269, 4270, 3486, 1610, 455, 84, 7, 1, 8518, 18152, 17080, 9296, 3220, 728, 112, 8, 1, 32206, 76662, 81684, 51240, 20916, 5796, 1092, 144, 9, 1
Offset: 0

Views

Author

Philippe Deléham, Dec 13 2009

Keywords

Examples

			Triangle begins as
    1;
    1,   1;
    4,   2,   1;
   13,  12,   3,  1;
   46,  52,  24,  4, 1;
  166, 230, 130, 40, 5, 1; ...
		

Programs

  • Magma
    [[(-1)^(n-k)*Binomial(n,k)*(&+[(-1)^j*Binomial(n-k+j,j): j in [0..n-k]]): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Apr 29 2019
    
  • Mathematica
    T[n_, k_]:= (-1)^(n-k)*Binomial[n, k]*Sum[(-1)^j*Binomial[n-k+j, j], {j, 0, n-k}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Apr 29 2019 *)
  • PARI
    {T(n,k) = (-1)^(n-k)*binomial(n,k)*sum(j=0,n-k,(-1)^j*binomial(n-k+j,j))}; \\ G. C. Greubel, Apr 29 2019
    
  • Sage
    [[(-1)^(n-k)*binomial(n,k)*sum((-1)^j*binomial(n-k+j,j) for j in (0..n-k)) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Apr 29 2019

Formula

Sum_{k, 0<=k<=n} T(n,k)*x^k = A127361(n), A127328(n), A026641(n), A126568(n), A133158(n) for x = -2, -1, 0, 1, 2 respectively.
T(n, k) = (-1)^(n-k)*binomial(n, k)*Sum_{j=0..n-k} (-1)^j*Binomial(n-k+j, j). - G. C. Greubel, Apr 29 2019
Showing 1-6 of 6 results.