cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 28 results. Next

A120589 Self-convolution of A120588, such that a(n) = 3*A120588(n) for n >= 2.

Original entry on oeis.org

1, 2, 3, 6, 15, 42, 126, 396, 1287, 4290, 14586, 50388, 176358, 624036, 2228700, 8023320, 29084535, 106073010, 388934370, 1432916100, 5301789570, 19692361260, 73398801060, 274447690920, 1029178840950, 3869712441972, 14585839204356
Offset: 0

Views

Author

Paul D. Hanna, Jun 16 2006

Keywords

Comments

For n >= 2, a(n) equals 2^(2n+1) times the coefficient of Pi in 2F1([3/2, n+1], [5/2], -1). - John M. Campbell, Jul 17 2011

Examples

			A(x) = 1 + 2*x + 3*x^2 + 6*x^3 + 15*x^4 + 42*x^5 + 126*x^6 + 396*x^7 + ...
A(x)^(1/2) = 1 + x + x^2 + 2*x^3 + 5*x^4 + 14*x^5 + 42*x^6 + 132*x^7 + ...
		

Crossrefs

Cf. A120588 (A(x)^(1/2)); A120590-A120607.

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!( (5-2*x-3*Sqrt(1-4*x))/2 )); // G. C. Greubel, Feb 18 2019
    
  • Maple
    A120589List := proc(m) local A, P, n; A := [1,2,3]; P := [3];
    for n from 1 to m - 2 do P := ListTools:-PartialSums([op(P), P[-1]]);
    A := [op(A), P[-1]] od; A end: A120589List(26); # Peter Luschny, Mar 26 2022
  • Mathematica
    Join[{1,2,3}, Table[3*(2*n)!/n!/(n+1)!, {n,2,40}]]
    CoefficientList[Series[(5-2x -3Sqrt[1-4x])/2, {x, 0, 30}], x] (* G. C. Greubel, Feb 18 2019 *)
  • PARI
    {a(n)=local(A=1+x+x^2+x*O(x^n));for(i=0,n,A=A-3*A+2+x+A^2);polcoeff(A^2,n)}
    
  • PARI
    my(x='x+O('x^30)); Vec((5-2*x-3*sqrt(1-4*x))/2) \\ G. C. Greubel, Feb 18 2019
    
  • Sage
    ((5-2*x-3*sqrt(1-4*x))/2).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Feb 18 2019

Formula

a(n) = 3*A000108(n-1) for n >= 2, where A000108 are the Catalan numbers.
G.f.: (5 - 2*x - 3*sqrt(1-4*x))/2. - G. C. Greubel, Feb 18 2019
a(n) ~ 3 * 2^(2*n-2) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Aug 20 2025

A001850 Central Delannoy numbers: a(n) = Sum_{k=0..n} C(n,k)*C(n+k,k).

Original entry on oeis.org

1, 3, 13, 63, 321, 1683, 8989, 48639, 265729, 1462563, 8097453, 45046719, 251595969, 1409933619, 7923848253, 44642381823, 252055236609, 1425834724419, 8079317057869, 45849429914943, 260543813797441, 1482376214227923, 8443414161166173, 48141245001931263
Offset: 0

Views

Author

Keywords

Comments

Number of paths from (0,0) to (n,n) in an n X n grid using only steps north, northeast and east (i.e., steps (1,0), (1,1), and (0,1)).
Also the number of ways of aligning two sequences (e.g., of nucleotides or amino acids) of length n, with at most 2*n gaps (-) inserted, so that while unnecessary gappings: - -a a- - are forbidden, both b- and -b are allowed. (If only other of the latter is allowed, then the sequence A000984 gives the number of alignments.) There is an easy bijection from grid walks given by Dickau to such set of alignments (e.g., the straight diagonal corresponds to the perfect alignment with no gaps). - Antti Karttunen, Oct 10 2001
Also main diagonal of array A008288 defined by m(i,1) = m(1,j) = 1, m(i,j) = m(i-1,j-1) + m(i-1,j) + m(i,j-1). - Benoit Cloitre, May 03 2002
So, as a special case of Dmitry Zaitsev's Dec 10 2015 comment on A008288, a(n) is the number of points in Z^n that are L1 (Manhattan) distance <= n from any given point. These terms occur in the crystal ball sequences: a(n) here is the n-th term in the sequence for the n-dimensional cubic lattice. See A008288 for a list of crystal ball sequences (rows or columns of A008288). - Shel Kaphan, Dec 26 2022
a(n) is the number of n-matchings of a comb-like graph with 2*n teeth. Example: a(2) = 13 because the graph consisting of a horizontal path ABCD and the teeth Aa, Bb, Cc, Dd has 13 2-matchings: any of the six possible pairs of teeth and {Aa, BC}, {Aa, CD}, {Bb, CD}, {Cc, AB}, {Dd, AB}, {Dd, BC}, {AB, CD}. - Emeric Deutsch, Jul 02 2002
Number of ordered trees with 2*n+1 edges, having root of odd degree, nonroot nodes of outdegree at most 2 and branches of odd length. - Emeric Deutsch, Aug 02 2002
The sum of the first n coefficients of ((1 - x) / (1 - 2*x))^n is a(n-1). - Michael Somos, Sep 28 2003
Row sums of A063007 and A105870. - Paul Barry, Apr 23 2005
The Hankel transform (see A001906 for definition) of this sequence is A036442: 1, 4, 32, 512, 16384, ... . - Philippe Deléham, Jul 03 2005
Also number of paths from (0,0) to (n,0) using only steps U = (1,1), H = (1,0) and D =(1,-1), U can have 2 colors and H can have 3 colors. - N-E. Fahssi, Jan 27 2008
Equals row sums of triangle A152250 and INVERT transform of A109980: (1, 2, 8, 36, 172, 852, ...). - Gary W. Adamson, Nov 30 2008
Number of overpartitions in the n X n box (treat a walk of the type in the first comment as an overpartition, by interpreting a NE step as N, E with the part thus created being overlined). - William J. Keith, May 19 2017
Diagonal of rational functions 1/(1 - x - y - x*y), 1/(1 - x - y*z - x*y*z). - Gheorghe Coserea, Jul 03 2018
Dimensions of endomorphism algebras End(R^{(n)}) in the Delannoy category attached to the oligomorphic group of order preserving self-bijections of the real line. - Noah Snyder, Mar 22 2023
a(n) is the number of ways to tile a strip of length n with white squares, black squares, and red dominos, where we must have an equal number of white and black squares. - Greg Dresden and Leo Zhang, Jul 11 2025

Examples

			G.f. = 1 + 3*x + 13*x^2 + 63*x^3 + 321*x^4 + 1683*x^5 + 8989*x^6 + ...
		

References

  • Frits Beukers, Arithmetic properties of Picard-Fuchs equations, Séminaire de Théorie des nombres de Paris, 1982-83, Birkhäuser Boston, Inc.
  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 593.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 81.
  • L. Moser and W. Zayachkowski, Lattice paths with diagonal steps, Scripta Math., 26 (1961), 223-229.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Wadsworth, Vol. 2, 1999; see Example 6.3.8 and Problem 6.49.
  • D. B. West, Combinatorial Mathematics, Cambridge, 2021, p. 28.

Crossrefs

Main diagonal of A064861.
Column k=2 of A262809 and A263159.

Programs

  • Maple
    seq(add(multinomial(n+k,n-k,k,k),k=0..n),n=0..20); # Zerinvary Lajos, Oct 18 2006
    seq(orthopoly[P](n,3), n=0..100); # Robert Israel, Nov 03 2015
  • Mathematica
    f[n_] := Sum[ Binomial[n, k] Binomial[n + k, k], {k, 0, n}]; Array[f, 21, 0] (* Or *)
    a[0] = 1; a[1] = 3; a[n_] := a[n] = (3(2 n - 1)a[n - 1] - (n - 1)a[n - 2])/n; Array[a, 21, 0] (* Or *)
    CoefficientList[ Series[1/Sqrt[1 - 6x + x^2], {x, 0, 20}], x] (* Robert G. Wilson v *)
    Table[LegendreP[n, 3], {n, 0, 22}] (* Jean-François Alcover, Jul 16 2012, from first formula *)
    a[n_] := Hypergeometric2F1[-n, n+1, 1, -1]; Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Feb 26 2013 *)
    a[ n_] := With[ {m = If[n < 0, -1 - n, n]}, SeriesCoefficient[ (1 - 6 x + x^2)^(-1/2), {x, 0, m}]]; (* Michael Somos, Jun 10 2015 *)
  • Maxima
    a(n):=coeff(expand((1+3*x+2*x^2)^n),x,n);
    makelist(a(n),n,0,12); /* Emanuele Munarini, Mar 02 2011 */
    
  • PARI
    {a(n) = if( n<0, n = -1 - n); polcoeff( 1 / sqrt(1 - 6*x + x^2 + x * O(x^n)), n)}; /* Michael Somos, Sep 23 2006 */
    
  • PARI
    {a(n) = if( n<0, n = -1 - n); subst( pollegendre(n), x, 3)}; /* Michael Somos, Sep 23 2006 */
    
  • PARI
    {a(n) = if( n<0, n = -1 - n); n++; subst( Pol(((1 - x) / (1 - 2*x) + O(x^n))^n), x, 1);} /* Michael Somos, Sep 23 2006 */
    
  • PARI
    a(n)=if(n<0, 0, polcoeff((1+3*x+2*x^2)^n, n)) \\ Paul Barry, Aug 22 2007
    
  • PARI
    /* same as in A092566 but use */
    steps=[[1,0], [0,1], [1,1]]; /* Joerg Arndt, Jun 30 2011 */
    
  • PARI
    a(n)=sum(k=0,n,binomial(n,k)*binomial(n+k,k)); \\ Joerg Arndt, May 11 2013
    
  • PARI
    my(x='x+O('x^30)); Vec(1/sqrt(1 - 6*x + x^2)) \\ Altug Alkan, Oct 17 2015
    
  • Python
    # from Nick Hobson.
    def f(a, b):
        if a == 0 or b == 0:
            return 1
        return f(a, b - 1) + f(a - 1, b) + f(a - 1, b - 1)
    [f(n, n) for n in range(7)]
    
  • Python
    from gmpy2 import divexact
    A001850 = [1, 3]
    for n in range(2,10**3):
        A001850.append(divexact(A001850[-1]*(6*n-3)-(n-1)*A001850[-2],n))
    # Chai Wah Wu, Sep 01 2014
    
  • Sage
    a = lambda n: hypergeometric([-n, -n], [1], 2)
    [simplify(a(n)) for n in range(23)] # Peter Luschny, Nov 19 2014

Formula

a(n) = P_n(3), where P_n is n-th Legendre polynomial.
G.f.: 1 / sqrt(1 - 6*x + x^2).
a(n) = a(n-1) + 2*A002002(n) = Sum_{j} A063007(n, j). - Henry Bottomley, Jul 02 2001
Dominant term in asymptotic expansion is binomial(2*n, n)/2^(1/4)*((sqrt(2) + 1)/2)^(2*n + 1)*(1 + c_1/n + c_2/n^2 + ...). - Michael David Hirschhorn
a(n) = Sum_{i=0..n} (A000079(i)*A008459(n, i)) = Sum_{i=0..n} (2^i * C(n, i)^2). - Antti Karttunen, Oct 10 2001
a(n) = Sum_{k=0..n} C(n+k, n-k)*C(2*k, k). - Benoit Cloitre, Feb 13 2003
a(n) = Sum_{k=0..n} C(n, k)^2 * 2^k. - Michael Somos, Oct 08 2003
a(n - 1) = coefficient of x^n in A120588(x)^n if n>=0. - Michael Somos, Apr 11 2012
G.f. of a(n-1) = 1 / (1 - x / (1 - 2*x / (1 - 2*x / (1 - x / (1 - 2*x / (1 - x / ...)))))). - Michael Somos, May 11 2012
INVERT transform is A109980. BINOMIAL transform is A080609. BINOMIAL transform of A006139. PSUM transform is A089165. PSUMSIGN transform is A026933. First backward difference is A110170. - Michael Somos, May 11 2012
E.g.f.: exp(3*x)*BesselI(0, 2*sqrt(2)*x). - Vladeta Jovovic, Mar 21 2004
a(n) = Sum_{k=0..n} C(2*n-k, n)*C(n, k). - Paul Barry, Apr 23 2005
a(n) = Sum_{k>=n} binomial(k, n)^2/2^(k+1). - Vladeta Jovovic, Aug 25 2006
a(n) = a(-1 - n) for all n in Z. - Michael Somos, Sep 23 2006
D-finite with recurrence: a(-1) = a(0) = 1; n*a(n) = 3*(2*n-1)*a(n-1) - (n-1)*a(n-2). Eq (4) in T. D. Noe's article in JIS 9 (2006) #06.2.7.
Define general Delannoy numbers by (i,j > 0): d(i,0) = d(0,j) = 1 =: d(0,0) and d(i,j) = d(i-1,j-1) + d(i-2,j-1) + d(i-1,j). Then a(k) = Sum_{j >= 0} d(k,j)^2 + d(k-1,j)^2 = A026933(n)+A026933(n-1). This is a special case of the following formula for general Delannoy numbers: d(k,j) = Sum_{i >= 0, p=0..n} d(p, i) * d(n-p, j-i) + d(p-1, i) * d(n-p-1, j-i-1). - Peter E John, Oct 19 2006
Coefficient of x^n in (1 + 3*x + 2*x^2)^n. - N-E. Fahssi, Jan 11 2008
a(n) = A008288(A046092(n)). - Philippe Deléham, Apr 08 2009
G.f.: 1/(1 - x - 2*x/(1 - x - x/(1 - x - x/(1 - x - x/(1 - ... (continued fraction). - Paul Barry, May 28 2009
G.f.: d/dx log(1/(1 - x*A001003(x))). - Vladimir Kruchinin, Apr 19 2011
G.f.: 1/(2*Q(0) + x - 1) where Q(k) = 1 + k*(1-x) - x - x*(k + 1)*(k + 2)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Mar 14 2013
a(n) = Sum_{k=0..n} C(n,k) * C(n+k,k). - Joerg Arndt, May 11 2013
G.f.: G(0), where G(k) = 1 + x*(6 - x)*(4*k + 1)/(4*k + 2 - 2*x*(6-x)*(2*k + 1)*(4*k + 3)/(x*(6 - x)*(4*k + 3) + 4*(k + 1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 22 2013
G.f.: 2/G(0), where G(k) = 1 + 1/(1 - x*(6 - x)*(2*k - 1)/(x*(6 - x)*(2*k - 1) + 2*(k + 1)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 16 2013
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - x*(6 - x)*(2*k + 1)/(x*(6 - x)*(2*k + 1) + 2*(k + 1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jul 17 2013
a(n)^2 = Sum_{k=0..n} 2^k * C(2*k, k)^2 * C(n+k, n-k) = A243949(n). - Paul D. Hanna, Aug 17 2014
a(n) = hypergeom([-n, -n], [1], 2). - Peter Luschny, Nov 19 2014
a(n) = Sum_{k=0..n/2} C(n-k,k) * 3^(n-2*k) * 2^k * C(n,k). - Vladimir Kruchinin, Jun 29 2015
a(n) = A049600(n, n-1).
a(n) = Sum_{0 <= j, k <= n} (-1)^(n+j)*C(n,k)*C(n,j)*C(n+k,k)*C(n+k+j,k+j). Cf. A126086 and A274668. - Peter Bala, Jan 15 2020
a(n) ~ c * (3 + 2*sqrt(2))^n / sqrt(n), where c = 1/sqrt(4*Pi*(3*sqrt(2)-4)) = 0.572681... (Banderier and Schwer, 2005). - Amiram Eldar, Jun 07 2020
a(n+1) = 3*a(n) + 2*Sum_{l=1..n} A006318(l)*a(n-l). [Eq. (1.16) in Qi-Shi-Guo (2016)]
a(n) ~ (1 + sqrt(2))^(2*n+1) / (2^(5/4) * sqrt(Pi*n)). - Vaclav Kotesovec, Jan 09 2023
a(n-1) + a(n) = A241023(n) for n >= 1. - Peter Bala, Sep 18 2024
a(n) = Sum_{k=0..n} C(n+k, 2*k) * C(2*k, k). - Greg Dresden and Leo Zhang, Jul 11 2025

Extensions

New name and reference Sep 15 1995
Formula and more references from Don Knuth, May 15 1996

A033184 Catalan triangle A009766 transposed.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 5, 5, 3, 1, 14, 14, 9, 4, 1, 42, 42, 28, 14, 5, 1, 132, 132, 90, 48, 20, 6, 1, 429, 429, 297, 165, 75, 27, 7, 1, 1430, 1430, 1001, 572, 275, 110, 35, 8, 1, 4862, 4862, 3432, 2002, 1001, 429, 154, 44, 9, 1
Offset: 1

Views

Author

Keywords

Comments

Triangle read by rows: T(n,k) = number of Dyck n-paths (A000108) containing k returns to ground level. E.g., the paths UDUUDD, UUDDUD each have 2 returns; so T(3,2)=2. Row sums over even-indexed columns are the Fine numbers A000957. - David Callan, Jul 25 2005
Triangular array of numbers a(n,k) = number of linear forests of k planted planar trees and n non-root nodes.
Catalan convolution triangle; with offset [0,0]: a(n,m)=(m+1)*binomial(2*n-m,n-m)/(n+1), n >= m >= 0, else 0. G.f. for column m: c(x)*(x*c(x))^m with c(x) g.f. for A000108 (Catalan). - Wolfdieter Lang, Sep 12 2001
a(n+1,m+1), n >= m >= 0, a(n,m) := 0, nA030528(n,m)*(-1)^(n-m).
a(n,k)=number of Dyck paths of semilength n and having k returns to the axis. Also number of Dyck paths of semilength n and having first peak at height k. Also number of ordered trees with n edges and root degree k. Also number of ordered trees with n edges and having the leftmost leaf at level k. Also number of parallelogram polyominoes of semiperimeter n+1 and having k cells in the leftmost column. - Emeric Deutsch, Mar 01 2004
Triangle T(n,k) with 1<=k<=n given by [0, 1, 1, 1, 1, 1, 1, 1, ...] DELTA [1, 0, 0, 0, 0, 0, 0, 0, ...] = 1; 0, 1; 0, 1, 1; 0, 2, 2, 1; 0, 5, 5, 3, 1; 0, 14, 14, 9, 4, 1; ... where DELTA is the operator defined in A084938; essentially the same triangle as A059365. - Philippe Deléham, Jun 14 2004
Number of Dyck paths of semilength and having k-1 peaks at height 2. - Emeric Deutsch, Aug 31 2004
Riordan array (c(x),x*c(x)), c(x) the g.f. of A000108. Inverse of Riordan array (1-x,x*(1-x)). - Paul Barry, Jun 22 2005
Subtriangle of triangle A106566. - Philippe Deléham, Jan 07 2007
T(n, k) is also the number of order-preserving and order-decreasing full transformations (of an n-chain) with exactly k fixed points. - Abdullahi Umar, Oct 02 2008
Triangle read by rows, product of A065600 and A007318 considered as infinite lower triangular arrays; A033184 = A065600*A007318. - Philippe Deléham, Dec 07 2009
The formula stating "Column k is the k-fold convolution of column 1" is equivalent to repeatedly applying M to [1,0,0,0,...], where M is an upper triangular matrix of all 1's with an additional single subdiagonal of 1's. - Gary W. Adamson, Jun 06 2011
4^(n-1) = (n-th row terms) dot (first n terms in A001792), where A001792 = binomial transform of the natural numbers: (1, 3, 8, 20, 48, 112, ...). Example: 4^4 = 256 = (14, 14, 9, 4, 1) dot (1, 3, 8, 20, 48) = (42 + 42 + 28 + 14 + 5 + 1) = 256. - Gary W. Adamson, Jun 17 2011
The e.g.f. for the n-th subdiagonal of the triangle has the form exp(x)*P(n,x), where P(n,x) is the e.g.f. for row n of triangle A039599. For example, the third row of A039599 is [5, 9, 5, 1] and so the third subdiagonal sequence of this triangle [5, 14, 28, 48, 75, ...] has the e.g.f. exp(x)*(5 + 9*x + 5*x^2/2! + x^3/3!). - Peter Bala, Oct 15 2019
Antidiagonals of convolution matrix of Table 1.3, p. 397, of Hoggatt and Bicknell. - Tom Copeland, Dec 25 2019
Also the convolution triangle of A120588(n) = A000108(n-1) for n > 0. - Peter Luschny, Oct 07 2022

Examples

			Triangle begins:
  ---+-----------------------------------
  n\k|   1    2    3    4    5    6    7
  ---+-----------------------------------
   1 |   1
   2 |   1    1
   3 |   2    2    1
   4 |   5    5    3    1
   5 |  14   14    9    4    1
   6 |  42   42   28   14    5    1
   7 | 132  132   90   48   20    6    1
From _Peter Bala_, Feb 17 2025: (Start)
The array factorizes as an infinite product (read from right to left) of triangular arrays:
  / 1               \        / 1              \ / 1              \ / 1             \
  | 1    1           |       | 0   1          | | 0  1           | | 1  1          |
  | 2    2   1       | = ... | 0   0   1      | | 0  1   1       | | 1  1  1       |
  | 5    5   3   1   |       | 0   0   1  1   | | 0  1   1  1    | | 1  1  1  1    |
  |14   14   9   4  1|       | 0   0   1  1  1| | 0  1   1  1  1 | | 1  1  1  1  1 |
  |...               |       |...             | |...             | |...            |
See Bala, Example 2.1. (End)
		

Crossrefs

Rows of Catalan triangle A009766 read backwards.
a(n, 1) = A000108(n-1). Row sums = A000108(n) (Catalan).
The following are all versions of (essentially) the same Catalan triangle: A009766, A030237, A033184, A059365, A099039, A106566, A130020, A047072.
Cf. A116364 (row squared sums), A120588.

Programs

  • Haskell
    a033184 n k = a033184_tabl !! (n-1) !! (k-1)
    a033184_row n = a033184_tabl !! (n-1)
    a033184_tabl = map reverse a009766_tabl
    -- Reinhard Zumkeller, Feb 19 2014
    
  • Magma
    /* As triangle: */ [[Binomial(2*n-k,n)*k/(2*n-k): k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Oct 12 2015
  • Maple
    a := proc(n,k) if k<=n then k*binomial(2*n-k,n)/(2*n-k) else 0 fi end: seq(seq(a(n,k),k=1..n),n=1..10);
    # Uses function PMatrix from A357368. Adds row and column for n, k = 0.
    PMatrix(10, n -> binomial(2*(n-1), n-1) / n); # Peter Luschny, Oct 07 2022
  • Mathematica
    nn = 10; c = (1 - (1 - 4 x)^(1/2))/(2 x); f[list_] := Select[list, # > 0 &]; Map[f, Drop[CoefficientList[Series[y x c/(1 - y x c), {x, 0, nn}], {x, y}],1]] //Flatten (* Geoffrey Critzer, Jan 31 2012 *)
    Flatten[Reverse /@ NestList[Append[Accumulate[#], Last[Accumulate[#]]] &, {1}, 9]] (* Birkas Gyorgy, May 19 2012 *)
    T[1, 1] := 1; T[n_, k_]/;1<=k<=n := T[n, k] = T[n-1, k-1]+T[n, k+1]; T[n_, k_] := 0; Flatten@Table[T[n, k], {n, 1, 10}, {k, 1, n}] (* Oliver Seipel, Dec 31 2024 *)
  • PARI
    T(n,k)=binomial(2*(n-k)+k,n-k)*(k+1)/(n+1) \\ Paul D. Hanna, Aug 11 2008
    
  • Sage
    # The simplest way to construct the triangle.
    def A033184_triangle(n) :
        T = [0 for i in (0..n)]
        for k in (1..n) :
            T[k] = 1
            for i in range(k-1,0,-1) :
                T[i] = T[i-1] + T[i+1]
            print([T[i] for i in (1..k)])
    A033184_triangle(10) # Peter Luschny, Jan 27 2012
    

Formula

Column k is the k-fold convolution of column 1. The triangle is also defined recursively by (i) entries outside triangle are 0, (ii) top left entry is 1, (iii) every other entry is sum of its east and northwest neighbor. - David Callan, Jul 25 2005
G.f.: t*x*c/(1-t*x*c), where c=(1-sqrt(1-4*x))/(2*x) is the g.f. of the Catalan numbers (A000108). - Emeric Deutsch, Mar 01 2004
T(n+1,k+1) = C(2*n-k, n-k)*(k+1)/(n+1). - Paul D. Hanna, Aug 11 2008
T((m+1)*n+r-1,m*n+r-1)*r/(m*n+r) = Sum_{k=1..n} (k/n)*T((m+1)*n-k-1,m*n-1)*T(r+k,r), n >= m > 1. - Vladimir Kruchinin, Mar 17 2011
T(n-1,m-1) = (m/n)*Sum_{k=1..n-m+1} (k*A000108(k-1)*T(n-k-1,m-2)), n >= m > 1. - Vladimir Kruchinin, Mar 17 2011
T(n,k) = C(2*n-k-1,n-k) - C(2*n-k-1,n-k-1). - Dennis P. Walsh, Mar 19 2012
T(n,k) = C(2*n-k,n)*k/(2*n-k). - Dennis P. Walsh, Mar 19 2012
T(n,k) = T(n,k-1) - T(n-1,k-2). - Dennis P. Walsh, Mar 19 2012
G.f.: 2*x*y / (1 + sqrt(1 - 4*x) - 2*x*y) = Sum_{n >= k > 0} T(n, k) * x^n * y^k. - Michael Somos, Jun 06 2016

A026641 Number of nodes of even outdegree (including leaves) in all ordered trees with n edges.

Original entry on oeis.org

1, 1, 4, 13, 46, 166, 610, 2269, 8518, 32206, 122464, 467842, 1794196, 6903352, 26635774, 103020253, 399300166, 1550554582, 6031074184, 23493410758, 91638191236, 357874310212, 1399137067684, 5475504511858, 21447950506396
Offset: 0

Views

Author

Keywords

Comments

Number of lattice paths from (0,0) to (n,n) using steps (1,0),(0,2),(1,1). - Joerg Arndt, Jun 30 2011
From Emeric Deutsch, Jan 25 2004: (Start)
Let B = 1/sqrt(1-4*z) = g.f. for central binomial coeffs (A000984); F = (1-sqrt(1-4*z))/(z*(3-sqrt(1-4*z))) = g.f. for (A000957).
B = 1 + 2*z + 6*z^2 + 20*z^3 + ... gives the number of nodes in all ordered trees with 0,1,2,3,... edges. On p. 288 of the Deutsch-Shapiro paper one finds that z*B*F = z + 2*z^2 + 7*z^3 + 24*z^4 + ... gives the number of nodes of odd outdegree in all ordered trees with 1,2,3,... edges (cf. A014300).
Consequently, B - z*B*F = 2/(3*sqrt(1-4*z)-1+4*z) = 1 + z + 4*z^2 + 13*z^3 + 46*z^4 + ... gives the total number of nodes of even degree in all ordered trees with 0,1,2,3,4,... edges. (End)
Main diagonal of the following array: first column is filled with 1's, first row is filled alternatively with 1's or 0's: m(i,j) = m(i-1,j) + m(i,j-1): 1 0 1 0 1 ... / 1 1 2 2 3 ... / 1 2 4 6 9 ... / 1 3 7 13 22 ... / 1 4 11 24 46 ... - Benoit Cloitre, Aug 05 2002
The Hankel transform of [1,1,4,13,46,166,610,2269,...] is 3^n. - Philippe Deléham, Mar 08 2007
Second binomial transform of A127361. - Philippe Deléham, Mar 14 2007
Starting with offset 1, generated from iterates of M * [1,1,1,...]; where M = a tridiagonal matrix with (0,2,2,2,...) in the main diagonal and (1,1,1,...) in the super and subdiagonals. - Gary W. Adamson, Jan 04 2009
Equals left border of triangle A158815. - Gary W. Adamson, Mar 27 2009
Equals the INVERTi transform of A101850: (1, 2, 7, 26, 100, ...). - Gary W. Adamson, Jan 10 2012
Diagonal of rational function 1/(1 - (x + x*y + y^2)). - Gheorghe Coserea, Aug 06 2018
Let A(i, j) denote the infinite array such that the i-th row of this array is the sequence obtained by applying the partial sum operator i times to the function (-1)^(n+1) for n > 0. Then A(n, n) equals a(n-1) for all n > 0. - John M. Campbell, Jan 20 2019
These numbers have the same parity as the Catalan numbers A000108; that is, a(n) is odd if and only if n = 2^k - 1 for some nonnegative integer k. It appears that if a(n) is odd then a(n) == 1 (mod 4). - Peter Bala, Feb 07 2024
The number a(n)/(n+1) is the coefficient of x^(n+1) in log(1+(1-sqrt(1-4*x))/2), the generating series of the Sabinin operad. - F. Chapoton, Mar 14 2024

Examples

			From _Joerg Arndt_, Jul 01 2011: (Start)
The triangle of number of lattice paths from (0,0) to (n,k) using steps (1,0),(0,2),(1,1) begins
  1;
  1, 1;
  1, 2,  4;
  1, 3,  7, 13;
  1, 4, 11, 24,  46;
  1, 5, 16, 40,  86, 166;
  1, 6, 22, 62, 148, 314,  610;
  1, 7, 29, 91, 239, 553, 1163, 2269;
This sequence is the diagonal. (End)
G.f. = 1 + x + 4*x^2 + 13*x^3 + 46*x^4 + 166*x^5 + 610*x^6 + 2269*x^7 + ...
		

Crossrefs

Cf. A091526 (k=-2), A072547 (k=-1), this sequence (k=0), A014300 (k=1), A014301 (k=2), A172025 (k=3), A172061 (k=4), A172062 (k=5), A172063 (k=6), A172064 (k=7), A172065 (k=8), A172066 (k=9), A172067 (k=10).

Programs

  • GAP
    List([0..25],n->(-1)^n*Sum([0..n],k->(-1)^k*Binomial(n+k,k))); # Muniru A Asiru, Aug 06 2018
    
  • Magma
    [(-1)^n*(&+[(-1)^k*Binomial(n+k, k): k in [0..n]]): n in [0..30]]; // G. C. Greubel, Feb 12 2019
    
  • Maple
    seq(add((binomial(k+n, n-k)*binomial(n-k, k)),k=0..floor(n/2)),n=0..30);
    # From Richard Choulet, Jan 22 2010: (Start)
    a:= n -> add(binomial(2*n-k, k)*binomial(k, n-k), k=floor(n/2)..n):
    a:= n -> `if`(n<2, 1, (3/(2))*binomial(2*n-1, n-1)-(1/2)*a(n-1)):
    a:= n -> (-1/2)^(n+2)+(2/3)*add(4^(n-k)*(binomial(2*k, k)*(1/(1-2*k))
            *(1-(-1/8)^(n-k+1))), k=0..n):
    a:= n -> (-1/2)^(n+2)+(3/4)*add(((-1/2)^(n-k))*(binomial(2*k, k)), k=0..n):
    seq(a(n), n=0..30); # (End)
    gf := log(1 + (1 - sqrt(1 - 4*x))/2) / x: ser := series(gf, x, 30):
    seq((n + 1)*coeff(ser, x, n), n = 0..24);  # Peter Luschny, Mar 16 2024
  • Mathematica
    f[n_]:= Sum[ Binomial[n+k, k]*Cos[Pi*(n+k)], {k, 0, n}]; Array[f, 25, 0] (* Robert G. Wilson v, Apr 02 2012 *)
    CoefficientList[Series[2/(3*Sqrt[1-4*x]-1+4*x), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 12 2014 *)
    a[ n_]:= SeriesCoefficient[ D[ Log[1+(1-Sqrt[1-4x])/2], x], {x, 0, n}]; (* Michael Somos, May 18 2015 *)
  • PARI
    a(n)=(-1)^n*sum(k=0,n,(-1)^k*binomial(n+k,k))
    
  • PARI
    /* same as in A092566 but use */
    steps=[[1,0], [0,2], [1,1]]; /* Joerg Arndt, Jun 30 2011 */
    
  • Sage
    [(-1)^n*sum((-1)^k*binomial(n+k, k) for k in (0..n)) for n in (0..30)] # G. C. Greubel, Feb 12 2019

Formula

G.f. is logarithmic derivative of the generating function for the Catalan numbers A000108. So this sequence might be called the "log-Catalan" numbers. - Murray R. Bremner, Jan 25 2004
a(n) = Sum_{k=0..floor(n/2)} binomial(k+n, n-k)*binomial(n-k, k). - Detlef Pauly (dettodet(AT)yahoo.de), Nov 15 2001
G.f.: 2/(3*sqrt(1-4*z)-1+4*z). - Emeric Deutsch, Jul 09 2002
a(n) = (-1)^n*Sum_{k=0..n} (-1)^k*C(n+k, k). - Benoit Cloitre, Aug 20 2002
a(n) = Sum_{j=0..floor(n/2)} binomial(2*n-2*j-1, n-1). - Emeric Deutsch, Jan 28 2004
From Paul Barry, Dec 18 2004: (Start)
A Catalan transform of the Jacobsthal numbers A001045(n+1) under the mapping G(x)-> G(xc(x)), c(x) the g.f. of A000108. The inverse mapping is H(x)->H(x(1-x)).
a(n) = Sum_{k=0..n} (k/(2*n-k))*binomial(2*n-k, n-k)*A001045(k+1). (End)
a(n) = Sum_{k=0..n} binomial(2*n-k, k)*binomial(k, n-k). - Paul Barry, Jul 25 2005
a(n) = Sum_{k=0..n-1} A126093(n,k). - Philippe Deléham, Mar 08 2007
a(n) = (-1/2)^(n+2) + (2/3)*Sum_{k=0..n} ( (4^n-k)*binomial(2*k,k)*(1/(1-2*k))*(1-(-1/8)^(n-k+1)) ). - Yalcin Aktar, Jul 06 2007
a(n) = (-1/2)^(n+2) + (3/4)*Sum_{k=0..n} (-1/2)^(n-k)*binomial(2*k,k). - Yalcin Aktar, Jul 06 2007
From Richard Choulet, Jan 22 2010: (Start)
a(n) = (3*binomial(2*n-1,n-1) - d(n-1))/2, where d(n) = Sum_{k=floor(n/2)..n} binomial(2*n-k, k)*binomial(k, n-k).
a(n) = a(n-1) + (3/2)*Sum_{k=2..n} (1/(2*k-1))*binomial(2*k,k)*a(n-k).
a(n) = (2/3)*binomial(2*n,n) + (2/9)*((-2)^n/n!)*Sum_{k>=0} ( Product_{p=0..n-1} (k-2*p) /3^k).
a(n) = Sum_{k=0..n} (-1)^k*binomial(2*n-k,n).
a(n) = ( Sum_{k=0..n} (1/2)^(n-k+1)*binomial(n+k,k) )^2*(-1/2)^(n+2). (End)
From Gary W. Adamson, Nov 22 2011: (Start)
a(n) is the upper left term of M^n, M = an infinite square production matrix as follows:
1, 3, 0, 0, 0, ...
1, 1, 1, 0, 0, ...
1, 1, 1, 1, 0, ...
1, 1, 1, 1, 1, ...
...
Also, a(n+1) is the sum of top row terms of M^n; e.g. top row of M^3 = (13, 21, 9, 3), sum = 46 = a(4), a(3) = 13. (End)
D-finite with recurrence: 2n*a(n) + (4-7n)*a(n-1) + 2*(1-2n)*a(n-2) = 0. - R. J. Mathar, Dec 17 2011 [The recurrence is proved with the Wilf-Zeilberger (WZ) method applied to Sum_{k=0..floor(n/2)} binomial(k+n, n-k)*binomial(n-k, k). - T. Amdeberhan, Jul 23 2012]
a(n) = A035317(2*n-1,n) for n > 0. - Reinhard Zumkeller, Jul 19 2012
a(n) ~ 2^(2*n+1) / (3*sqrt(Pi*n)). - Vaclav Kotesovec, Feb 12 2014
a(n) = binomial(2*n,n)*hypergeom([1, -n], [-2*n], -1). - Peter Luschny, May 22 2014
G.f. is the derivative of the logarithm of the g.f. for A120588. - Michael Somos, May 18 2015
a(n) = [x^n] 1/((1 - x^2)*(1 - x)^n). - Ilya Gutkovskiy, Oct 25 2017
From Peter Bala, Feb 25 2019: (Start)
a(n) = Sum_{k = 0..n} binomial(2*n + 1, n + k + 1)*(-2)^k.
a(n-1) = (1/2)*binomial(2*n,n)*( 1 - 2*(n-1)/(n+1) + 4*(n-1)*(n-2)/((n+1)*(n+2)) - 8*(n-1)*(n-2)*(n-3)/((n+1)*(n+2)*(n+3)) + ...) = (1/2)*binomial(2*n,n)*hypergeom([1 - n, 1], [n + 1], 2). (End)
a(0)=1, a(1)=1, and a(n) = (2 - 1/n)*a(n-2) + (7/2 - 2/n)*a(n-1) for n > 1. - Reginald Robson, Nov 01 2022

A006632 a(n) = 3*binomial(4*n-1, n-1)/(4*n-1).

Original entry on oeis.org

1, 3, 15, 91, 612, 4389, 32890, 254475, 2017356, 16301164, 133767543, 1111731933, 9338434700, 79155435870, 676196049060, 5815796869995, 50318860986108, 437662920058980, 3824609516638444, 33563127932394060, 295655735395397520, 2613391671568320765
Offset: 1

Views

Author

Keywords

Comments

a(n) is the number of ordered trees (A000108) with 3n-1 edges in which every non-leaf vertex has exactly two leaf children (no restriction on non-leaf children). For example, a(2) counts the 3 trees
\/......\/......\/
.\|/...\|/....\|/ . - David Callan, Aug 22 2014
a(n) is the number of lattice paths from (0,0) to (3n,n) using only the steps (1,0) and (0,1) and which are strictly below the line y = x/3 except at the path's endpoints. - Lucas A. Brown, Aug 21 2020
This is instance k = 3 of the family {c(k, n)}A130564.%20-%20_Wolfdieter%20Lang">{n>=1} given in a comment in A130564. - _Wolfdieter Lang, Feb 04 2024

References

  • H. M. Finucan, Some decompositions of generalized Catalan numbers, pp. 275-293 of Combinatorial Mathematics IX. Proc. Ninth Australian Conference (Brisbane, August 1981). Ed. E. J. Billington, S. Oates-Williams and A. P. Street. Lecture Notes Math., 952. Springer-Verlag, 1982.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    A006632:= func< n | Binomial(4*n-2,n-1)/n >;
    [A006632(n): n in [1..40]]; // G. C. Greubel, Sep 01 2025
    
  • Maple
    A006632:=n->3*binomial(4*n-1,n-1)/(4*n-1): seq(A006632(n), n=1..30); # Wesley Ivan Hurt, Oct 23 2017
  • Mathematica
    InverseSeries[Series[y*(1-y)^3, {y, 0, 24}], x] (* then A(x)=y(x) *) (* Len Smiley, Apr 07 2000 *)
    a[ n_] := If[n<1, 0, Binomial[4 n - 2, n - 1] / n]; (* Michael Somos, Aug 22 2014 *)
  • PARI
    a(n) = 3*binomial(4*n-1, n-1)/(4*n-1) \\ Felix Fröhlich, Oct 23 2017
    
  • SageMath
    def A006632(n): return binomial(4*n-2,n-1)//n
    print([A006632(n) for n in range(1,41)]) # G. C. Greubel, Sep 01 2025

Formula

a(n) = binomial(4*n-1, n)/(4*n-1) = 3*binomial(4*n-2, n-1) - binomial(4*n-2, n). - David Callan, Sep 15 2004
G.f.: g^3 where g = 1+x*g^4 is the g.f. of A002293. - Mark van Hoeij, Nov 11 2011
a(n) = (3/4)*binomial(4*n,n)/(4*n-1). - Bruno Berselli, Jan 17 2014
From Wolfdieter Lang, Feb 06 2020: (Start)
G.f.: (3/4)*(1 - hypergeometric3F2([-1, 1, 2]/4, [1, 2]/3, (4^4/3^3)*x)).
E.g.f.: (3/4)*(1 - hypergeometric3F3([-1, 1, 2]/4, [1, 2, 3]/3, (4^4/3^3)*x)). (End)
D-finite with recurrence 3*n*(3*n-1)*(3*n-2)*a(n) -8*(4*n-5)*(4*n-3)*(2*n-1)*a(n-1)=0. - R. J. Mathar, May 07 2021
a(n) = (2n-1)*A000260(n). - F. Chapoton, Jul 15 2021
G.f. A(x) satisfies: A(x) = x / (1 - A(x))^3. - Ilya Gutkovskiy, Nov 03 2021
G.f.: x*( Sum_{n >= 0} binomial(4*n+3, n)*x^n ) / ( Sum_{n >= 0} binomial(4*n, n)*x^n ) = x*( Sum_{n >= 0} binomial(4*n+3, n)*x^n ) / ( 1 + 4*x*Sum_{n >= 0} binomial(4*n+3, n)*x^n ). - Peter Bala, Dec 13 2024
Working with a offset of 0, the g.f. A(x) = 1 + 3*x + 15*x^2 + ... is uniquely determined by the conditions A(0) = 1 and [x^n] A(x)^(-n) = -3 for all n >= 1. - Peter Bala, Jul 24 2025

A120607 G.f. satisfies: 37*A(x) = 36 + 81*x + A(x)^10, starting with [1,3,15].

Original entry on oeis.org

1, 3, 15, 270, 5505, 124818, 3028200, 76896180, 2018211930, 54311811330, 1490518569747, 41556060361920, 1173726329836125, 33513124885393020, 965755118941566180, 28051840723006217040, 820439774630057541690
Offset: 0

Views

Author

Paul D. Hanna, Jun 16 2006

Keywords

Comments

See comments in A120588 for conditions needed for an integer sequence to satisfy a functional equation of the form: r*A(x) = c + b*x + A(x)^n.

Examples

			A(x) = 1 + 3*x + 15*x^2 + 270*x^3 + 5505*x^4 + 124818*x^5 +...
A(x)^10 = 1 + 30*x + 555*x^2 + 9990*x^3 + 203685*x^4 + 4618266*x^5 +...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[1 + InverseSeries[Series[(1+37*x - (1+x)^10)/81, {x, 0, 20}], x], x] (* Vaclav Kotesovec, Nov 28 2017 *)
  • PARI
    {a(n)=local(A=1+3*x+15*x^2+x*O(x^n));for(i=0,n,A=A+(-37*A+36+81*x+A^10)/27);polcoeff(A,n)}

Formula

G.f.: A(x) = 1 + Series_Reversion((1+37*x - (1+x)^10)/81). Lagrange Inversion yields: G.f.: A(x) = Sum_{n>=0} C(9*n,n)/(8*n+1) * (36+81*x)^(8*n+1)/37^(9*n+1). - Paul D. Hanna, Jan 24 2008
a(n) ~ 3^(-1 + 4*n) * (-36 + 9*(37/10)^(10/9))^(1/2 - n) / (2^(5/9) * 5^(1/18) * 37^(4/9) * n^(3/2) * sqrt(Pi)). - Vaclav Kotesovec, Nov 28 2017

A155587 Expansion of (1 + x*c(x))/(1 - x), where c(x) is the g.f. of A000108.

Original entry on oeis.org

1, 2, 3, 5, 10, 24, 66, 198, 627, 2057, 6919, 23715, 82501, 290513, 1033413, 3707853, 13402698, 48760368, 178405158, 656043858, 2423307048, 8987427468, 33453694488, 124936258128, 467995871778, 1757900019102, 6619846420554
Offset: 0

Views

Author

Paul Barry, Jan 24 2009

Keywords

Comments

Row sums of A155586.
Hankel transform is A057079(n+2).
From Petros Hadjicostas, Aug 03 2020: (Start)
To prove R. J. Mathar's conjecture, note that the o.g.f. of the sequence implies (Sum_{n >= 0} a(n)*x^n)*(1 - x) = 1 + x*c(x); i.e., a(0) + Sum_{n >= 1} (a(n) - a(n-1))*x^n = 1 + Sum_{n >= 1} C(n-1)*x^n, where C(n) = A000108(n) (Catalan numbers).
Thus, C(n-1) = a(n) - a(n-1) (for n >= 1), and hence C(n) = a(n+1) - a(n). Since 2*(2*n - 1)*C(n-1) = (n + 1)*C(n), we get (n + 1)*a(n+1) + (-5*n + 1)*a(n) + 2*(2*n - 1)*a(n-1) = 0. The last equation implies R. J. Mathar's conjecture. (End)

Crossrefs

Partial sums of A120588.

Programs

  • Haskell
    a155587 n = a155587_list !! n
    a155587_list = scanl (+) 1 a000108_list  -- Reinhard Zumkeller, Mar 01 2013
  • Maple
    CatalanNumber := n -> binomial(2*n, n)/(n+1):
    a := n -> ((3 - I*sqrt(3)))/2 - CatalanNumber(n)*hypergeom([1, n+1/2], [n+2], 4):
    seq(simplify(a(n)), n=0..26); # Peter Luschny, Aug 04 2020

Formula

a(n) = 1 + Sum_{k=0..n-1} A000108(k).
Conjecture: n*a(n) + (6-5*n)*a(n-1) + 2*(2*n-3)*a(n-2) = 0. - R. J. Mathar, Nov 15 2011
a(n) = A014138(n-1) + 2 for n > 0. - Reinhard Zumkeller, Mar 01 2013 [Corrected by Petros Hadjicostas, Aug 03 2020]
a(n+1) - a(n) = A000108(n). - Petros Hadjicostas, Aug 04 2020
a(n) = ((3 - i*sqrt(3)))/2 - CatalanNumber(n)*hypergeom([1, n + 1/2], [n + 2], 4). - Peter Luschny, Aug 04 2020

A120590 G.f. satisfies: 4*A(x) = 3 + x + A(x)^3, starting with [1,1,3].

Original entry on oeis.org

1, 1, 3, 19, 150, 1326, 12558, 124590, 1278189, 13449205, 144342627, 1573990275, 17389407984, 194228357568, 2189610888840, 24881753664840, 284708154606318, 3277578288381318, 37934510719585350, 441152315040444150
Offset: 0

Views

Author

Paul D. Hanna, Jun 16 2006, Jan 24 2008

Keywords

Comments

See comments in A120588 for conditions needed for an integer sequence to satisfy a functional equation of the form: r*A(x) = c + b*x + A(x)^n.

Examples

			A(x) = 1 + x + 3*x^2 + 19*x^3 + 150*x^4 + 1326*x^5 + 12558*x^6 +...
A(x)^3 = 1 + 3*x + 12*x^2 + 76*x^3 + 600*x^4 + 5304*x^5 + 50232*x^6 +...
		

Crossrefs

Programs

  • Mathematica
    FullSimplify[Table[SeriesCoefficient[Sum[Binomial[3*k,k]/(2*k+1)*(3+x)^(2*k+1)/4^(3*k+1),{k,0,Infinity}],{x,0,n}] ,{n,0,20}]] (* Vaclav Kotesovec, Oct 19 2012 *)
  • PARI
    {a(n)=local(A=1+x+3*x^2+x*O(x^n));for(i=0,n,A=A-4*A+3+x+A^3);polcoeff(A,n)}

Formula

G.f.: A(x) = 1 + Series_Reversion(1+4*x - (1+x)^3).
G.f.: A(x) = Sum_{n>=0} C(3*n,n)/(2*n+1) * (3+x)^(2*n+1) / 4^(3*n+1), due to Lagrange Inversion.
Recurrence: 13*(n-1)*n*a(n) = 81*(n-1)*(2*n-3)*a(n-1) + 3*(3*n-7)*(3*n-5)*a(n-2). - Vaclav Kotesovec, Oct 19 2012
a(n) ~ sqrt(32-18*sqrt(3))*((81+48*sqrt(3))/13)^n/(12*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 19 2012
G.f.: 4 * sin( arcsin(3 * sqrt(3) * (3 + x) / 16) / 3) / sqrt(3). - Benedict W. J. Irwin, Oct 19 2016

A120592 G.f. satisfies: 5*A(x) = 4 + 4*x + A(x)^3, starting with [1,2,6].

Original entry on oeis.org

1, 2, 6, 40, 330, 3048, 30156, 312528, 3349170, 36809960, 412651668, 4700098416, 54237852708, 632762593680, 7450815536280, 88435205367456, 1056940049423682, 12708927083800296, 153636691533864900, 1866178021496170800
Offset: 0

Views

Author

Paul D. Hanna, Jun 16 2006, Jan 24 2008

Keywords

Comments

See comments in A120588 for conditions needed for an integer sequence to satisfy a functional equation of the form: r*A(x) = c + b*x + A(x)^n.

Examples

			A(x) = 1 + 2*x + 6*x^2 + 40*x^3 + 330*x^4 + 3048*x^5 + 30156*x^6 +...
A(x)^3 = 1 + 6*x + 30*x^2 + 200*x^3 + 1650*x^4 +15240*x^5 +150780*x^6 +...
		

Crossrefs

Programs

  • Mathematica
    FullSimplify[Table[SeriesCoefficient[Sum[Binomial[3*k,k]/(2*k+1)*(4+4*x)^(2*k+1)/5^(3*k+1),{k,0,Infinity}],{x,0,n}],{n,0,20}]] (* Vaclav Kotesovec, Oct 19 2012 *)
  • PARI
    {a(n)=local(A=1+2*x+6*x^2+x*O(x^n));for(i=0,n,A=A+(-5*A+4+4*x+A^3)/2);polcoeff(A,n)}

Formula

G.f.: A(x) = 1 + Series_Reversion((1+5*x - (1+x)^3)/4).
G.f.: A(x) = Sum_{n>=0} C(3*n,n)/(2*n+1) * (4+4*x)^(2*n+1) / 5^(3*n+1), due to Lagrange Inversion.
Recurrence: 17*(n-1)*n*a(n) = 108*(n-1)*(2*n-3)*a(n-1) + 12*(3*n-7)*(3*n-5)*a(n-2). - Vaclav Kotesovec, Oct 19 2012
a(n) ~ sqrt(250-60*sqrt(15))*((108+30*sqrt(15))/17)^n/(30*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 19 2012

A378112 Number A(n,k) of k-tuples (p_1, p_2, ..., p_k) of Dyck paths of semilength n, such that each p_i is never below p_{i-1} and the upper path p_k only touches the x-axis at its endpoints; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 2, 0, 1, 1, 3, 9, 5, 0, 1, 1, 4, 23, 55, 14, 0, 1, 1, 5, 46, 265, 400, 42, 0, 1, 1, 6, 80, 880, 3942, 3266, 132, 0, 1, 1, 7, 127, 2347, 23695, 70395, 28999, 429, 0, 1, 1, 8, 189, 5403, 105554, 824229, 1445700, 274537, 1430, 0
Offset: 0

Views

Author

Alois P. Heinz, Nov 16 2024

Keywords

Examples

			A(3,2) = 9:
                             /\
           /\/\             /  \      /\     /\/\
  (/\/\/\,/    \)  (/\/\/\,/    \)  (/  \/\,/    \)
.
            /\                                /\
    /\     /  \        /\   /\/\        /\   /  \
  (/  \/\,/    \)  (/\/  \,/    \)  (/\/  \,/    \)
.
                             /\        /\     /\
    /\/\   /\/\      /\/\   /  \      /  \   /  \
  (/    \,/    \)  (/    \,/    \)  (/    \,/    \)
.
Square array A(n,k) begins:
  1,  1,    1,     1,      1,       1,        1, ...
  1,  1,    1,     1,      1,       1,        1, ...
  0,  1,    2,     3,      4,       5,        6, ...
  0,  2,    9,    23,     46,      80,      127, ...
  0,  5,   55,   265,    880,    2347,     5403, ...
  0, 14,  400,  3942,  23695,  105554,   382508, ...
  0, 42, 3266, 70395, 824229, 6601728, 40446551, ...
		

Crossrefs

Columns k=0-3 give: A019590(n+1), A120588, A355281, A378114.
Rows n=0+1,2,3 give: A000012, A001477, A101986.
Main diagonal gives A378113.

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1, 2^k*mul(
          (2*(n-i)+2*k-3)/(n+2*k-1-i), i=0..k-1)*b(n-1, k))
        end:
    A:= proc(n, k) option remember;
          b(n, k)-add(A(n-i, k)*b(i, k), i=1..n-1)
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..10);

Formula

Column k is INVERTi transform of row k of A368025.
Showing 1-10 of 28 results. Next