A120589
Self-convolution of A120588, such that a(n) = 3*A120588(n) for n >= 2.
Original entry on oeis.org
1, 2, 3, 6, 15, 42, 126, 396, 1287, 4290, 14586, 50388, 176358, 624036, 2228700, 8023320, 29084535, 106073010, 388934370, 1432916100, 5301789570, 19692361260, 73398801060, 274447690920, 1029178840950, 3869712441972, 14585839204356
Offset: 0
A(x) = 1 + 2*x + 3*x^2 + 6*x^3 + 15*x^4 + 42*x^5 + 126*x^6 + 396*x^7 + ...
A(x)^(1/2) = 1 + x + x^2 + 2*x^3 + 5*x^4 + 14*x^5 + 42*x^6 + 132*x^7 + ...
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Guo-Niu Han, Enumeration of Standard Puzzles, 2011. [Cached copy]
- Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.
- S. Kitaev, J. Remmel and M. Tiefenbruck, Marked mesh patterns in 132-avoiding permutations I, arXiv:1201.6243 [math.CO], 2012. - From _N. J. A. Sloane_, May 09 2012
- Sergey Kitaev, Jeffrey Remmel, and Mark Tiefenbruck, Quadrant Marked Mesh Patterns in 132-Avoiding Permutations II, arXiv:1302.2274 [math.CO], 2013.
- Sergey Kitaev, Jeffrey Remmel, Mark Tiefenbruck, Quadrant Marked Mesh Patterns in 132-Avoiding Permutations II, Electronic Journal of Combinatorial Number Theory, 15 (2015), #A16.
-
m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!( (5-2*x-3*Sqrt(1-4*x))/2 )); // G. C. Greubel, Feb 18 2019
-
A120589List := proc(m) local A, P, n; A := [1,2,3]; P := [3];
for n from 1 to m - 2 do P := ListTools:-PartialSums([op(P), P[-1]]);
A := [op(A), P[-1]] od; A end: A120589List(26); # Peter Luschny, Mar 26 2022
-
Join[{1,2,3}, Table[3*(2*n)!/n!/(n+1)!, {n,2,40}]]
CoefficientList[Series[(5-2x -3Sqrt[1-4x])/2, {x, 0, 30}], x] (* G. C. Greubel, Feb 18 2019 *)
-
{a(n)=local(A=1+x+x^2+x*O(x^n));for(i=0,n,A=A-3*A+2+x+A^2);polcoeff(A^2,n)}
-
my(x='x+O('x^30)); Vec((5-2*x-3*sqrt(1-4*x))/2) \\ G. C. Greubel, Feb 18 2019
-
((5-2*x-3*sqrt(1-4*x))/2).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Feb 18 2019
A001850
Central Delannoy numbers: a(n) = Sum_{k=0..n} C(n,k)*C(n+k,k).
Original entry on oeis.org
1, 3, 13, 63, 321, 1683, 8989, 48639, 265729, 1462563, 8097453, 45046719, 251595969, 1409933619, 7923848253, 44642381823, 252055236609, 1425834724419, 8079317057869, 45849429914943, 260543813797441, 1482376214227923, 8443414161166173, 48141245001931263
Offset: 0
G.f. = 1 + 3*x + 13*x^2 + 63*x^3 + 321*x^4 + 1683*x^5 + 8989*x^6 + ...
- Frits Beukers, Arithmetic properties of Picard-Fuchs equations, Séminaire de Théorie des nombres de Paris, 1982-83, Birkhäuser Boston, Inc.
- Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 593.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 81.
- L. Moser and W. Zayachkowski, Lattice paths with diagonal steps, Scripta Math., 26 (1961), 223-229.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. P. Stanley, Enumerative Combinatorics, Wadsworth, Vol. 2, 1999; see Example 6.3.8 and Problem 6.49.
- D. B. West, Combinatorial Mathematics, Cambridge, 2021, p. 28.
- Chai Wah Wu, Table of n, a(n) for n = 0..1308 (all terms < 10^1000, first 201 terms from T. D. Noe)
- M. Abrate, S. Barbero, U. Cerruti, and N. Murru, Fixed Sequences for a Generalization of the Binomial Interpolated Operator and for some Other Operators, J. Int. Seq. 14 (2011), #11.8.1.
- B. Adamczewski, J. P. Bell, and E. Delaygue, Algebraic independence of G-functions and congruences "à la Lucas", arXiv:1603.04187 [math.NT], 2016.
- J.-M. Autebert, A.-M. Décaillot, and S. R. Schwer, H.-A. Delannoy et les oeuvres posthumes d'Édouard Lucas, Gazette des Mathématiciens - no 95, Jan 2003 (in French).
- J.-M. Autebert, M. Latapy, and S. R. Schwer, Le treillis des Chemins de Delannoy, Discrete Math., 258 (2002), 225-234.
- J.-M. Autebert and S. R. Schwer, On generalized Delannoy paths, SIAM J. Discrete Math., 16(2) (2003), 208-223.
- Cyril Banderier and Sylviane Schwer, Why Delannoy numbers?, arXiv:math/0411128 [math.CO], 2004.
- Cyril Banderier and Sylviane Schwer, Why Delannoy numbers?, Journal of Statistical Planning and Inference, 135(1) (2005), 40-54.
- Paul Barry, On Integer-Sequence-Based Constructions of Generalized Pascal Triangles, Journal of Integer Sequences, 9 (2006), #06.2.4.
- Paul Barry, On the Central Coefficients of Riordan Matrices, Journal of Integer Sequences, 16 (2013), #13.5.1.
- Paul Barry, On the Inverses of a Family of Pascal-Like Matrices Defined by Riordan Arrays, Journal of Integer Sequences, 16 (2013), #13.5.6.
- Paul Barry, Jacobsthal Decompositions of Pascal's Triangle, Ternary Trees, and Alternating Sign Matrices, Journal of Integer Sequences, 19 (2016), #16.3.5.
- Paul Barry and Aoife Hennessy, Generalized Narayana Polynomials, Riordan Arrays, and Lattice Paths, Journal of Integer Sequences, 15 (2012), #12.4.8.
- Paul Barry, Moment sequences, transformations, and Spidernet graphs, arXiv:2307.00098 [math.CO], 2023.
- Thomas Baruchel and C. Elsner, On error sums formed by rational approximations with split denominators, arXiv:1602.06445 [math.NT], 2016.
- H. Bateman, Some problems in potential theory, Messenger Math., 52 (1922), 71-78. [Annotated scanned copy]
- Raymond A. Beauregard and Vladimir A. Dobrushkin, Powers of a Class of Generating Functions, Mathematics Magazine, 89(5) (2016), 359-363.
- Hacène Belbachir and Abdelghani Mehdaoui, Recurrence relation associated with the sums of square binomial coefficients, Quaestiones Mathematicae (2021) Vol. 44, Issue 5, 615-624.
- Hacène Belbachir, Abdelghani Mehdaoui, and László Szalay, Diagonal Sums in the Pascal Pyramid, II: Applications, J. Int. Seq., 22 (2019), #19.3.5.
- A. Bostan, S. Boukraa, J.-M. Maillard, and J.-A. Weil, Diagonals of rational functions and selected differential Galois groups, arXiv:1507.03227 [math-ph], 2015.
- J. S. Caughman et al., A note on lattice chains and Delannoy numbers, Discrete Math., 308 (2008), 2623-2628.
- Jia-Yu Chen and Chen Wang, Congruences concerning generalized central trinomial coefficients, arXiv:2012.04523 [math.NT], 2020.
- Johann Cigler, Some nice Hankel determinants, arXiv:1109.1449 [math.CO], 2011.
- Johann Cigler and Christian Krattenthaler, Hankel determinants of linear combinations of moments of orthogonal polynomials, arXiv:2003.01676 [math.CO], 2020.
- M. Coster, Email, Nov 1990.
- F. D. Cunden, Statistical distribution of the Wigner-Smith time-delay matrix for chaotic cavities, arXiv:1412.2172 [cond-mat.mes-hall], 2014.
- Emeric Deutsch and B. E. Sagan, Congruences for Catalan and Motzkin numbers and related sequences, J. Num. Theory 117 (2006), 191-215.
- Ömür Deveci and Anthony G. Shannon, Some aspects of Neyman triangles and Delannoy arrays, Mathematica Montisnigri (2021) Vol. L, 36-43.
- R. M. Dickau, Delannoy and Motzkin Numbers [Many illustrations].
- R. M. Dickau, The 13 paths in a 4 X 4 grid.
- T. Doslic, Seven lattice paths to log-convexity, Acta Appl. Mathem. 110(3) (2010), 1373-1392.
- Tomislav Došlic and Darko Veljan, Logarithmic behavior of some combinatorial sequences, Discrete Math. 308(11) (2008), 2182-2212. MR2404544 (2009j:05019) - _N. J. A. Sloane_, May 01 2012
- D. Drake, Bijections from Weighted Dyck Paths to Schröder Paths, J. Int. Seq. 13 (2010), #10.9.2.
- Rui Duarte and António Guedes de Oliveira, Generating functions of lattice paths, Univ. do Porto (Portugal 2023).
- M. Dziemianczuk, Generalizing Delannoy numbers via counting weighted lattice paths, INTEGERS, 13 (2013), #A54.
- M. Dziemianczuk, On Directed Lattice Paths With Additional Vertical Steps, arXiv:1410.5747 [math.CO], 2014.
- James East and Nicholas Ham, Lattice paths and submonoids of Z^2, arXiv:1811.05735 [math.CO], 2018.
- Steffen Eger, On the Number of Many-to-Many Alignments of N Sequences, arXiv:1511.00622 [math.CO], 2015.
- Luca Ferrari and Emanuele Munarini, Enumeration of edges in some lattices of paths, arXiv:1203.6792 [math.CO], 2012.
- Luca Ferrari and Emanuele Munarini, Enumeration of edges in some lattices of paths, J. Int. Seq. 17 (2014), #14.1.5.
- Seth Finkelstein, Letter to N. J. A. Sloane, Mar 24 1990, with attachments.
- S. Garrabrant and I. Pak, Counting with irrational tiles, arXiv:1407.8222 [math.CO], 2014.
- Joël Gay and Vincent Pilaud, The weak order on Weyl posets, arXiv:1804.06572 [math.CO], 2018.
- Taras Goy and Mark Shattuck, Determinant identities for the Catalan, Motzkin and Schröder numbers, Art Disc. Appl. Math. (2023).
- Nate Harman, Andrew Snowden, and Noah Snyder, The Delannoy Category, arxiv:2211.15392 [math.RT], 2023.
- Tian-Xiao He, One-pth Riordan Arrays in the Construction of Identities, arXiv:2011.00173 [math.CO], 2020.
- M. D. Hirschhorn, How many ways can a king cross the board?, Austral. Math. Soc. Gaz., 27 (2000), 104-106.
- Nick Hobson, Python program for this sequence.
- P.-Y. Huang, S.-C. Liu, and Y.-N. Yeh, Congruences of Finite Summations of the Coefficients in certain Generating Functions, The Electronic Journal of Combinatorics, 21 (2014), #P2.45.
- Milan Janjic, Two Enumerative Functions
- Svante Janson, Patterns in random permutations avoiding some sets of multiple patterns, arXiv:1804.06071 [math.PR], 2018.
- S. Kaparthi and H. R. Rao, Higher dimensional restricted lattice paths with diagonal steps, Discr. Appl. Math., 31 (1991), 279-289.
- D. E. Knuth and N. J. A. Sloane, Correspondence, December 1999.
- Daniel Krenn and Jeffrey Shallit, Strongly k-recursive sequences, arXiv:2401.14231 [cs.FL], 2024.
- D. F. Lawden, On the Solution of Linear Difference Equations, Math. Gaz., 36 (1952), 193-196.
- Tamás Lengyel, On some p-adic properties and supercongruences of Delannoy and Schröder Numbers, Integers (2021) Vol. 21, #A86.
- Huyile Liang, Yanni Pei, and Yi Wang, Analytic combinatorics of coordination numbers of cubic lattices, arXiv:2302.11856 [math.CO], 2023. See p. 4.
- Huyile Liang, Jeffrey Remmel, and Sainan Zheng, Stieltjes moment sequences of polynomials, arXiv:1710.05795 [math.CO], 2017, see page 18.
- Max A. Little and Ugur Kayas, Polymorphic dynamic programming by algebraic shortcut fusion, arXiv:2107.01752 [cs.DS], 2021.
- Lily L. Liu, Positivity of three-term recurrence sequences, Electronic J. Combinatorics, 17 (2010), #R57.
- Romeo Mestrovic, Lucas' theorem: its generalizations, extensions and applications (1878-2014), arXiv preprint arXiv:1409.3820 [math.NT], 2014.
- Lili Mu and Sai-nan Zheng, On the Total Positivity of Delannoy-Like Triangles, Journal of Integer Sequences, 20 (2017), #17.1.6.
- Leo Moser, Note 2487: King paths on a chessboard, Math. Gaz., 39 (1955), 54 (one page only).
- Emanuele Munarini, Combinatorial properties of the antichains of a garland, Integers, 9 (2009), 353-374.
- Tony D. Noe, On the Divisibility of Generalized Central Trinomial Coefficients, Journal of Integer Sequences, 9 (2006), #06.2.7.
- P. Peart and W.-J. Woan, Generating Functions via Hankel and Stieltjes Matrices, J. Integer Seqs., 3 (2000), #00.2.1.
- R. Pemantle and M. C. Wilson, Asymptotics of multivariate sequences, I: smooth points of the singular variety, arXiv:math/0003192 [math.CO], 2000.
- C. de Jesús Pita Ruiz Velasco, Convolution and Sulanke Numbers, JIS 13 (2010), #10.1.8.
- F. Qi, X.-T. Shi and B.-N. Guo, Some properties of the Schroder numbers, Indian J. Pure Appl. Math 47 (4) (2016) 717-732.
- J. L. Ramírez and V. F. Sirvent, A Generalization of the k-Bonacci Sequence from Riordan Arrays, The Electronic Journal of Combinatorics, 22(1) (2015), #P1.38
- J. Riordan, Letter, Jul 06 1978.
- John Riordan, Letter to N. J. A. Sloane, Sep 26 1980 with notes on the 1973 Handbook of Integer Sequences. Note that the sequences are identified by their N-numbers, not their A-numbers.
- E. Rowland and D. Zeilberger, A Case Study in Meta-AUTOMATION: AUTOMATIC Generation of Congruence AUTOMATA For Combinatorial Sequences, arXiv:1311.4776 [math.CO], 2013.
- S. Samieinia, The number of continuous curves in digital geometry, Research Reports in Mathematics, Number 3, 2008.
- S. R. Schwer and J.-M. Auterbert, Henri-Auguste Delannoy, une biographie, Math. & Sci. hum. / Mathematical Social Sciences, 43e année, no. 174 (2006), 25-67.
- Seunghyun Seo, The Catalan Threshold Arrangement, Journal of Integer Sequences, 20 (2017), #17.1.1.
- T. Sillke, The Delannoy numbers.
- Mark Shattuck, On the zeros of some polynomials with combinatorial coefficients, Annales Mathematicae et Informaticae, 42 (2013), 93-101.
- Zhao Shen, On the 3-adic valuation of a class of Apery-like numbers, arXiv:2112.11135 [math.NT], 2021.
- J. B. Slowinski, The Number of Multiple Alignments, Molecular Phylogenetics and Evolution, 10(2) (1998), 264-266.
- J. B. Slowinski, The Number of Multiple Alignments, Molecular Phylogenetics and Evolution, 10(2) (1998), 264-266.
- R. G. Stanton and D. D. Cowan, Note on a "square" functional equation, SIAM Rev., 12 (1970), 277-279.
- R. A. Sulanke, Moments of generalized Motzkin paths, J. Integer Sequences, 3 (2000), #00.1.
- R. A. Sulanke, Objects Counted by the Central Delannoy Numbers, Journal of Integer Sequences, 5 (2002), #03.1.5.
- R. A. Sulanke et al., Another description of the central Delannoy numbers, Problem 10894, Amer. Math. Monthly, 110(5) (2003), 443-444.
- Zhi-Wei Sun, On Delannoy numbers and Schroeder numbers, Journal of Number Theory 131(12) (2011), 2387-2397. doi:10.1016/j.jnt.2011.06.005
- Marius Tarnauceanu, The number of fuzzy subgroups of finite cyclic groups and Delannoy numbers, European Journal of Combinatorics 30(1) (2009), 283-287.
- Bernhard Von Stengel, New maximal numbers of equilibria in bimatrix games, Discrete & Computational Geometry 21(4) (1999), 557-568. See Eq. (3.7).
- Rong-Hua Wang and Michael X. X. Zhong, Congruences for sums of Delannoy numbers and polynomials, arXiv:2505.05728 [math.CO], 2025. See p. 2.
- Yi Wang, Sai-Nan Zheng, and Xi Chen, Analytic aspects of Delannoy numbers, Discrete Mathematics 342.8 (2019): 2270-2277.
- Eric Weisstein's World of Mathematics, Delannoy Number.
- Eric Weisstein's World of Mathematics, Schmidt's Problem.
- W.-J. Woan, Hankel Matrices and Lattice Paths, J. Integer Sequences, 4 (2001), #01.1.2.
- E. X. W. Xia and O. X. M. Yao, A Criterion for the Log-Convexity of Combinatorial Sequences, The Electronic Journal of Combinatorics, 20 (2013), #P3.
- Lin Yang, Yu-Yuan Zhang, and Sheng-Liang Yang, The halves of Delannoy matrix and Chung-Feller properties of the m-Schröder paths, Linear Alg. Appl. (2024).
Cf.
A008288, bisection of
A026003,
A027618,
A047665,
A052141,
A084773,
A152250,
A109980,
A000129,
A078057,
A241023,
A243949.
-
seq(add(multinomial(n+k,n-k,k,k),k=0..n),n=0..20); # Zerinvary Lajos, Oct 18 2006
seq(orthopoly[P](n,3), n=0..100); # Robert Israel, Nov 03 2015
-
f[n_] := Sum[ Binomial[n, k] Binomial[n + k, k], {k, 0, n}]; Array[f, 21, 0] (* Or *)
a[0] = 1; a[1] = 3; a[n_] := a[n] = (3(2 n - 1)a[n - 1] - (n - 1)a[n - 2])/n; Array[a, 21, 0] (* Or *)
CoefficientList[ Series[1/Sqrt[1 - 6x + x^2], {x, 0, 20}], x] (* Robert G. Wilson v *)
Table[LegendreP[n, 3], {n, 0, 22}] (* Jean-François Alcover, Jul 16 2012, from first formula *)
a[n_] := Hypergeometric2F1[-n, n+1, 1, -1]; Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Feb 26 2013 *)
a[ n_] := With[ {m = If[n < 0, -1 - n, n]}, SeriesCoefficient[ (1 - 6 x + x^2)^(-1/2), {x, 0, m}]]; (* Michael Somos, Jun 10 2015 *)
-
a(n):=coeff(expand((1+3*x+2*x^2)^n),x,n);
makelist(a(n),n,0,12); /* Emanuele Munarini, Mar 02 2011 */
-
{a(n) = if( n<0, n = -1 - n); polcoeff( 1 / sqrt(1 - 6*x + x^2 + x * O(x^n)), n)}; /* Michael Somos, Sep 23 2006 */
-
{a(n) = if( n<0, n = -1 - n); subst( pollegendre(n), x, 3)}; /* Michael Somos, Sep 23 2006 */
-
{a(n) = if( n<0, n = -1 - n); n++; subst( Pol(((1 - x) / (1 - 2*x) + O(x^n))^n), x, 1);} /* Michael Somos, Sep 23 2006 */
-
a(n)=if(n<0, 0, polcoeff((1+3*x+2*x^2)^n, n)) \\ Paul Barry, Aug 22 2007
-
/* same as in A092566 but use */
steps=[[1,0], [0,1], [1,1]]; /* Joerg Arndt, Jun 30 2011 */
-
a(n)=sum(k=0,n,binomial(n,k)*binomial(n+k,k)); \\ Joerg Arndt, May 11 2013
-
my(x='x+O('x^30)); Vec(1/sqrt(1 - 6*x + x^2)) \\ Altug Alkan, Oct 17 2015
-
# from Nick Hobson.
def f(a, b):
if a == 0 or b == 0:
return 1
return f(a, b - 1) + f(a - 1, b) + f(a - 1, b - 1)
[f(n, n) for n in range(7)]
-
from gmpy2 import divexact
A001850 = [1, 3]
for n in range(2,10**3):
A001850.append(divexact(A001850[-1]*(6*n-3)-(n-1)*A001850[-2],n))
# Chai Wah Wu, Sep 01 2014
-
a = lambda n: hypergeometric([-n, -n], [1], 2)
[simplify(a(n)) for n in range(23)] # Peter Luschny, Nov 19 2014
New name and reference Sep 15 1995
Formula and more references from
Don Knuth, May 15 1996
A033184
Catalan triangle A009766 transposed.
Original entry on oeis.org
1, 1, 1, 2, 2, 1, 5, 5, 3, 1, 14, 14, 9, 4, 1, 42, 42, 28, 14, 5, 1, 132, 132, 90, 48, 20, 6, 1, 429, 429, 297, 165, 75, 27, 7, 1, 1430, 1430, 1001, 572, 275, 110, 35, 8, 1, 4862, 4862, 3432, 2002, 1001, 429, 154, 44, 9, 1
Offset: 1
Triangle begins:
---+-----------------------------------
n\k| 1 2 3 4 5 6 7
---+-----------------------------------
1 | 1
2 | 1 1
3 | 2 2 1
4 | 5 5 3 1
5 | 14 14 9 4 1
6 | 42 42 28 14 5 1
7 | 132 132 90 48 20 6 1
From _Peter Bala_, Feb 17 2025: (Start)
The array factorizes as an infinite product (read from right to left) of triangular arrays:
/ 1 \ / 1 \ / 1 \ / 1 \
| 1 1 | | 0 1 | | 0 1 | | 1 1 |
| 2 2 1 | = ... | 0 0 1 | | 0 1 1 | | 1 1 1 |
| 5 5 3 1 | | 0 0 1 1 | | 0 1 1 1 | | 1 1 1 1 |
|14 14 9 4 1| | 0 0 1 1 1| | 0 1 1 1 1 | | 1 1 1 1 1 |
|... | |... | |... | |... |
See Bala, Example 2.1. (End)
- Reinhard Zumkeller, Rows n = 1..125 of triangle, flattened
- José Agapito, Ângela Mestre, Maria M. Torres, and Pasquale Petrullo, On One-Parameter Catalan Arrays, Journal of Integer Sequences, Vol. 18 (2015), Article 15.5.1.
- M. Aigner, Enumeration via ballot numbers, Discrete Math., 308 (2008), 2544-2563.
- J. L. Arregui, Tangent and Bernoulli numbers related to Motzkin and Catalan numbers by means of numerical triangles, arXiv:math/0109108 [math.NT], 2001.
- Peter Bala, Factorisations of some Riordan arrays as infinite products
- Jean-Luc Baril and Paul Barry, Two kinds of partial Motzkin paths with air pockets, arXiv:2212.12404 [math.CO], 2022.
- Paul Barry, Invariant number triangles, eigentriangles and Somos-4 sequences, arXiv preprint arXiv:1107.5490 [math.CO], 2011.
- Paul Barry, Riordan Arrays, Orthogonal Polynomials as Moments, and Hankel Transforms, J. Int. Seq. 14 (2011) # 11.2.2, example 3.
- Paul Barry, On the Central Coefficients of Bell Matrices, J. Int. Seq. 14 (2011) # 11.4.3 example 6.
- Paul Barry, Riordan-Bernstein Polynomials, Hankel Transforms and Somos Sequences, Journal of Integer Sequences, Vol. 15 2012, #12.8.2.
- Paul Barry, Comparing two matrices of generalized moments defined by continued fraction expansions, arXiv preprint arXiv:1311.7161 [math.CO], 2013 and J. Int. Seq. 17 (2014) # 14.5.1.
- Paul Barry, Embedding structures associated with Riordan arrays and moment matrices, arXiv preprint arXiv:1312.0583 [math.CO], 2013.
- Paul Barry, Generalized Catalan Numbers Associated with a Family of Pascal-like Triangles, J. Int. Seq., Vol. 22 (2019), Article 19.5.8.
- Paul Barry, A Note on Riordan Arrays with Catalan Halves, arXiv:1912.01124 [math.CO], 2019.
- Paul Barry, Chebyshev moments and Riordan involutions, arXiv:1912.11845 [math.CO], 2019.
- Paul Barry, The second production matrix of a Riordan array, arXiv:2011.13985 [math.CO], 2020.
- Paul Barry, A Riordan array family for some integrable lattice models, arXiv:2409.09547 [math.CO], 2024. See p. 9.
- Paul Barry, Extensions of Riordan Arrays and Their Applications, Mathematics (2025) Vol. 13, No. 2, 242. See p. 13.
- Paul Barry, Notes on Riordan arrays and lattice paths, arXiv:2504.09719 [math.CO], 2025. See pp. 15, 29.
- Paul Barry and A. Hennessy, Meixner-Type Results for Riordan Arrays and Associated Integer Sequences, J. Int. Seq. 13 (2010) # 10.9.4.
- Paul Barry and A. Hennessy, Four-term Recurrences, Orthogonal Polynomials and Riordan Arrays, Journal of Integer Sequences, 2012, article 12.4.2. - From _N. J. A. Sloane_, Sep 21 2012
- A. Bernini, M. Bouvel and L. Ferrari, Some statistics on permutations avoiding generalized patterns, PU.M.A. Vol. 18 (2007), No. 3-4, pp. 223-237.
- S. Brlek, E. Duchi, E. Pergola and S. Rinaldi, On the equivalence problem for succession rules, Discr. Math., 298 (2005), 142-154.
- Fangfang Cai, Qing-Hu Hou, Yidong Sun and Arthur L.B. Yang, Combinatorial identities related to 2X2 submatrices of recursive matrices, arXiv:1808.05736 [math.CO], 2018.
- David Callan, A recursive bijective approach to counting permutations..., arXiv:math/0211380 [math.CO], 2002.
- N. T. Cameron, Random walks, trees and extensions of Riordan group techniques, Dissertation, Howard University, 2002.
- Naiomi Cameron and J. E. McLeod, Returns and Hills on Generalized Dyck Paths, Journal of Integer Sequences, Vol. 19, 2016, #16.6.1.
- Matteo Cervetti and Luca Ferrari, Enumeration of Some Classes of Pattern Avoiding Matchings, with a Glimpse into the Matching Pattern Poset, Annals of Combinatorics (2022).
- Xiaomei Chen, Counting humps and peaks in Motzkin paths with height k, arXiv:2412.00668 [math.CO], 2024. See p. 6.
- Gi-Sang Cheon, Hana Kim and Louis W. Shapiro, Combinatorics of Riordan arrays with identical A and Z sequences, Discrete Math., 312 (2012), 2040-2049.
- Gi-Sang Cheon, S.-T. Jin and L. W. Shapiro, A combinatorial equivalence relation for formal power series, Linear Algebra and its Applications, Volume 491, 15 February 2016, Pages 123-137; Proceedings of the 19th ILAS Conference, Seoul, South Korea 2014.
- Lapo Cioni and Luca Ferrari, Preimages under the Queuesort algorithm, arXiv preprint arXiv:2102.07628 [math.CO], 2021; Discrete Math., 344 (2021), #112561.
- Emeric Deutsch, Dyck path enumeration, Discrete Math., 204, 1999, 167-202.
- FindStat - Combinatorial Statistic Finder, The number of touch points of a Dyck path, The number of initial rises of a Dyck paths, The number of nodes on the left branch of the tree, The number of subtrees.
- Shishuo Fu and Yaling Wang, Bijective recurrences concerning two Schröder triangles, arXiv:1908.03912 [math.CO], 2019.
- Samuele Giraudo, Tree series and pattern avoidance in syntax trees, arXiv:1903.00677 [math.CO], 2019.
- Peter M. Higgins, Combinatorial results for semigroups of order-preserving mappings, Math. Proc. Camb. Phil. Soc. 113 (1993), 281-296. [From _Abdullahi Umar_, Oct 02 2008]
- V. E. Hoggatt, Jr. and M. Bicknell, Catalan and related sequences arising from inverses of Pascal's triangle matrices, Fib. Quart., 14 (1976), 395-405.
- JiSun Huh, Sangwook Kim, Seunghyun Seo, and Heesung Shin, On 102-avoiding inversion sequences, arXiv:2506.02985 [math.CO], 2025. See p. 13.
- Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
- Wolfdieter Lang, On polynomials related to powers of the generating function of Catalan numbers, The Fibonacci Quart. 38 (2000) 408-19.
- P. J. Larcombe and D. R. French, The Catalan number k-fold self-convolution identity: the original formulation, Journal of Combinatorial Mathematics and Combinatorial Computing 46 (2003) 191-204.
- Toufik Mansour and Mark Shattuck, Enumeration of Catalan and smooth words according to capacity, Integers (2025) Vol. 25, Art. No. A5. See p. 12.
- R. J. Mathar, Topologically Distinct Sets of Non-intersecting Circles in the Plane, arXiv:1603.00077 [math.CO], 2016.
- D. Merlini, R. Sprugnoli and M. C. Verri, An algebra for proper generating trees
- J. Noonan and D. Zeilberger, The Enumeration of Permutations With a Prescribed Number of ``Forbidden'' Patterns, arXiv:math/9808080 [math.CO], 1998; Also Adv. in Appl. Math. 17 (1996), no. 4, 381--407. MR1422065 (97j:05003).
- J.-C. Novelli and J.-Y. Thibon, Noncommutative Symmetric Functions and Lagrange Inversion, arXiv:math/0512570 [math.CO], 2005-2006.
- J. M. Pallo, Enumerating, Ranking and Unranking Binary Trees, The Computer Journal, Volume 29, Issue 2, 1986, Pages 171-175.
- R. Pemantle and M. C. Wilson, Twenty Combinatorial Examples of Asymptotics Derived from Multivariate Generating Functions, SIAM Rev., 50 (2008), no. 2, 199-272. See p. 264.
- A. Reifegerste, On the diagram of 132-avoiding permutations, arXiv:math/0208006 [math.CO], 2002.
- A. Robertson, D. Saracino and D. Zeilberger, Refined restricted permutations, arXiv:math/0203033 [math.CO], 2002.
- Yuriy Shablya, Dmitry Kruchinin and Vladimir Kruchinin, Method for Developing Combinatorial Generation Algorithms Based on AND/OR Trees and Its Application, Mathematics (2020) Vol. 8, No. 6, 962.
- Yidong Sun and Fei Ma, Four transformations on the Catalan triangle, arXiv preprint arXiv:1305.2017 [math.CO], 2013.
- Yidong Sun and Fei Ma, Some new binomial sums related to the Catalan triangle, Electronic Journal of Combinatorics 21(1) (2014), #P1.33.
- A. Umar, Some combinatorial problems in the theory of symmetric inverse semigroups, Algebra Disc. Math. 9 (2010) 115-126.
- Sheng-Liang Yang and L. J. Wang, Taylor expansions for the m-Catalan numbers, Australasian Journal of Combinatorics, Volume 64(3) (2016), Pages 420-431.
- S.-n. Zheng and S.-l. Yang, On the-Shifted Central Coefficients of Riordan Matrices, Journal of Applied Mathematics, Volume 2014, Article ID 848374, 8 pages.
Rows of Catalan triangle
A009766 read backwards.
-
a033184 n k = a033184_tabl !! (n-1) !! (k-1)
a033184_row n = a033184_tabl !! (n-1)
a033184_tabl = map reverse a009766_tabl
-- Reinhard Zumkeller, Feb 19 2014
-
/* As triangle: */ [[Binomial(2*n-k,n)*k/(2*n-k): k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Oct 12 2015
-
a := proc(n,k) if k<=n then k*binomial(2*n-k,n)/(2*n-k) else 0 fi end: seq(seq(a(n,k),k=1..n),n=1..10);
# Uses function PMatrix from A357368. Adds row and column for n, k = 0.
PMatrix(10, n -> binomial(2*(n-1), n-1) / n); # Peter Luschny, Oct 07 2022
-
nn = 10; c = (1 - (1 - 4 x)^(1/2))/(2 x); f[list_] := Select[list, # > 0 &]; Map[f, Drop[CoefficientList[Series[y x c/(1 - y x c), {x, 0, nn}], {x, y}],1]] //Flatten (* Geoffrey Critzer, Jan 31 2012 *)
Flatten[Reverse /@ NestList[Append[Accumulate[#], Last[Accumulate[#]]] &, {1}, 9]] (* Birkas Gyorgy, May 19 2012 *)
T[1, 1] := 1; T[n_, k_]/;1<=k<=n := T[n, k] = T[n-1, k-1]+T[n, k+1]; T[n_, k_] := 0; Flatten@Table[T[n, k], {n, 1, 10}, {k, 1, n}] (* Oliver Seipel, Dec 31 2024 *)
-
T(n,k)=binomial(2*(n-k)+k,n-k)*(k+1)/(n+1) \\ Paul D. Hanna, Aug 11 2008
-
# The simplest way to construct the triangle.
def A033184_triangle(n) :
T = [0 for i in (0..n)]
for k in (1..n) :
T[k] = 1
for i in range(k-1,0,-1) :
T[i] = T[i-1] + T[i+1]
print([T[i] for i in (1..k)])
A033184_triangle(10) # Peter Luschny, Jan 27 2012
A026641
Number of nodes of even outdegree (including leaves) in all ordered trees with n edges.
Original entry on oeis.org
1, 1, 4, 13, 46, 166, 610, 2269, 8518, 32206, 122464, 467842, 1794196, 6903352, 26635774, 103020253, 399300166, 1550554582, 6031074184, 23493410758, 91638191236, 357874310212, 1399137067684, 5475504511858, 21447950506396
Offset: 0
From _Joerg Arndt_, Jul 01 2011: (Start)
The triangle of number of lattice paths from (0,0) to (n,k) using steps (1,0),(0,2),(1,1) begins
1;
1, 1;
1, 2, 4;
1, 3, 7, 13;
1, 4, 11, 24, 46;
1, 5, 16, 40, 86, 166;
1, 6, 22, 62, 148, 314, 610;
1, 7, 29, 91, 239, 553, 1163, 2269;
This sequence is the diagonal. (End)
G.f. = 1 + x + 4*x^2 + 13*x^3 + 46*x^4 + 166*x^5 + 610*x^6 + 2269*x^7 + ...
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Paul Barry, A Catalan Transform and Related Transformations on Integer Sequences, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.5.
- Isaac DeJager, Madeleine Naquin, and Frank Seidl, Colored Motzkin Paths of Higher Order, VERUM 2019.
- Emeric Deutsch and L. Shapiro, A survey of the Fine numbers, Discrete Math., 241 (2001), 241-265.
- Karl Dilcher and Maciej Ulas, Arithmetic properties of polynomial solutions of the Diophantine equation P(x)x^(n+1)+Q(x)(x+1)^(n+1) = 1, arXiv:1909.11222 [math.NT], 2019.
- Filippo Disanto, Andrea Frosini and Simone Rinaldi, Renzo Pinzani, The Combinatorics of Convex Permutominoes, Southeast Asian Bulletin of Mathematics (2008) 32: 883-912.
Cf.
A091526 (k=-2),
A072547 (k=-1), this sequence (k=0),
A014300 (k=1),
A014301 (k=2),
A172025 (k=3),
A172061 (k=4),
A172062 (k=5),
A172063 (k=6),
A172064 (k=7),
A172065 (k=8),
A172066 (k=9),
A172067 (k=10).
-
List([0..25],n->(-1)^n*Sum([0..n],k->(-1)^k*Binomial(n+k,k))); # Muniru A Asiru, Aug 06 2018
-
[(-1)^n*(&+[(-1)^k*Binomial(n+k, k): k in [0..n]]): n in [0..30]]; // G. C. Greubel, Feb 12 2019
-
seq(add((binomial(k+n, n-k)*binomial(n-k, k)),k=0..floor(n/2)),n=0..30);
# From Richard Choulet, Jan 22 2010: (Start)
a:= n -> add(binomial(2*n-k, k)*binomial(k, n-k), k=floor(n/2)..n):
a:= n -> `if`(n<2, 1, (3/(2))*binomial(2*n-1, n-1)-(1/2)*a(n-1)):
a:= n -> (-1/2)^(n+2)+(2/3)*add(4^(n-k)*(binomial(2*k, k)*(1/(1-2*k))
*(1-(-1/8)^(n-k+1))), k=0..n):
a:= n -> (-1/2)^(n+2)+(3/4)*add(((-1/2)^(n-k))*(binomial(2*k, k)), k=0..n):
seq(a(n), n=0..30); # (End)
gf := log(1 + (1 - sqrt(1 - 4*x))/2) / x: ser := series(gf, x, 30):
seq((n + 1)*coeff(ser, x, n), n = 0..24); # Peter Luschny, Mar 16 2024
-
f[n_]:= Sum[ Binomial[n+k, k]*Cos[Pi*(n+k)], {k, 0, n}]; Array[f, 25, 0] (* Robert G. Wilson v, Apr 02 2012 *)
CoefficientList[Series[2/(3*Sqrt[1-4*x]-1+4*x), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 12 2014 *)
a[ n_]:= SeriesCoefficient[ D[ Log[1+(1-Sqrt[1-4x])/2], x], {x, 0, n}]; (* Michael Somos, May 18 2015 *)
-
a(n)=(-1)^n*sum(k=0,n,(-1)^k*binomial(n+k,k))
-
/* same as in A092566 but use */
steps=[[1,0], [0,2], [1,1]]; /* Joerg Arndt, Jun 30 2011 */
-
[(-1)^n*sum((-1)^k*binomial(n+k, k) for k in (0..n)) for n in (0..30)] # G. C. Greubel, Feb 12 2019
A006632
a(n) = 3*binomial(4*n-1, n-1)/(4*n-1).
Original entry on oeis.org
1, 3, 15, 91, 612, 4389, 32890, 254475, 2017356, 16301164, 133767543, 1111731933, 9338434700, 79155435870, 676196049060, 5815796869995, 50318860986108, 437662920058980, 3824609516638444, 33563127932394060, 295655735395397520, 2613391671568320765
Offset: 1
- H. M. Finucan, Some decompositions of generalized Catalan numbers, pp. 275-293 of Combinatorial Mathematics IX. Proc. Ninth Australian Conference (Brisbane, August 1981). Ed. E. J. Billington, S. Oates-Williams and A. P. Street. Lecture Notes Math., 952. Springer-Verlag, 1982.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- O. Aichholzer, A. Asinowski and T. Miltzow, Disjoint compatibility graph of non-crossing matchings of points in convex position, arXiv preprint arXiv:1403.5546 [math.CO], 2014.
- Paul Barry, Characterizations of the Borel triangle and Borel polynomials, arXiv:2001.08799 [math.CO], 2020.
- Clemens Heuberger, Sarah J. Selkirk, and Stephan Wagner, Enumeration of Generalized Dyck Paths Based on the Height of Down-Steps Modulo k, arXiv:2204.14023 [math.CO], 2022.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 438
- Elżbieta Liszewska and Wojciech Młotkowski, Some relatives of the Catalan sequence, arXiv:1907.10725 [math.CO], 2019.
- J. Sawada, J. Sears, A. Trautrim, and A. Williams, Demystifying our Grandparent's De Bruijn Sequences with Concatenation Trees, arXiv:2308.12405 [math.CO], 2023.
-
A006632:= func< n | Binomial(4*n-2,n-1)/n >;
[A006632(n): n in [1..40]]; // G. C. Greubel, Sep 01 2025
-
A006632:=n->3*binomial(4*n-1,n-1)/(4*n-1): seq(A006632(n), n=1..30); # Wesley Ivan Hurt, Oct 23 2017
-
InverseSeries[Series[y*(1-y)^3, {y, 0, 24}], x] (* then A(x)=y(x) *) (* Len Smiley, Apr 07 2000 *)
a[ n_] := If[n<1, 0, Binomial[4 n - 2, n - 1] / n]; (* Michael Somos, Aug 22 2014 *)
-
a(n) = 3*binomial(4*n-1, n-1)/(4*n-1) \\ Felix Fröhlich, Oct 23 2017
-
def A006632(n): return binomial(4*n-2,n-1)//n
print([A006632(n) for n in range(1,41)]) # G. C. Greubel, Sep 01 2025
A120607
G.f. satisfies: 37*A(x) = 36 + 81*x + A(x)^10, starting with [1,3,15].
Original entry on oeis.org
1, 3, 15, 270, 5505, 124818, 3028200, 76896180, 2018211930, 54311811330, 1490518569747, 41556060361920, 1173726329836125, 33513124885393020, 965755118941566180, 28051840723006217040, 820439774630057541690
Offset: 0
A(x) = 1 + 3*x + 15*x^2 + 270*x^3 + 5505*x^4 + 124818*x^5 +...
A(x)^10 = 1 + 30*x + 555*x^2 + 9990*x^3 + 203685*x^4 + 4618266*x^5 +...
-
CoefficientList[1 + InverseSeries[Series[(1+37*x - (1+x)^10)/81, {x, 0, 20}], x], x] (* Vaclav Kotesovec, Nov 28 2017 *)
-
{a(n)=local(A=1+3*x+15*x^2+x*O(x^n));for(i=0,n,A=A+(-37*A+36+81*x+A^10)/27);polcoeff(A,n)}
A155587
Expansion of (1 + x*c(x))/(1 - x), where c(x) is the g.f. of A000108.
Original entry on oeis.org
1, 2, 3, 5, 10, 24, 66, 198, 627, 2057, 6919, 23715, 82501, 290513, 1033413, 3707853, 13402698, 48760368, 178405158, 656043858, 2423307048, 8987427468, 33453694488, 124936258128, 467995871778, 1757900019102, 6619846420554
Offset: 0
- Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
- Gerard Cohen and Jean-Pierre Flori, On a generalized combinatorial conjecture involving addition mod 2^k - 1, IACR, Report 2011/400.
- Jean-Pierre Flori, Fonctions booléennes, courbes algébriques et multiplication complexe, Thesis, ParisTech, Feb 03 2012.
- Guo-Niu Han, Enumeration of Standard Puzzles, 2011. [Cached copy]
- Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.
-
a155587 n = a155587_list !! n
a155587_list = scanl (+) 1 a000108_list -- Reinhard Zumkeller, Mar 01 2013
-
CatalanNumber := n -> binomial(2*n, n)/(n+1):
a := n -> ((3 - I*sqrt(3)))/2 - CatalanNumber(n)*hypergeom([1, n+1/2], [n+2], 4):
seq(simplify(a(n)), n=0..26); # Peter Luschny, Aug 04 2020
A120590
G.f. satisfies: 4*A(x) = 3 + x + A(x)^3, starting with [1,1,3].
Original entry on oeis.org
1, 1, 3, 19, 150, 1326, 12558, 124590, 1278189, 13449205, 144342627, 1573990275, 17389407984, 194228357568, 2189610888840, 24881753664840, 284708154606318, 3277578288381318, 37934510719585350, 441152315040444150
Offset: 0
A(x) = 1 + x + 3*x^2 + 19*x^3 + 150*x^4 + 1326*x^5 + 12558*x^6 +...
A(x)^3 = 1 + 3*x + 12*x^2 + 76*x^3 + 600*x^4 + 5304*x^5 + 50232*x^6 +...
-
FullSimplify[Table[SeriesCoefficient[Sum[Binomial[3*k,k]/(2*k+1)*(3+x)^(2*k+1)/4^(3*k+1),{k,0,Infinity}],{x,0,n}] ,{n,0,20}]] (* Vaclav Kotesovec, Oct 19 2012 *)
-
{a(n)=local(A=1+x+3*x^2+x*O(x^n));for(i=0,n,A=A-4*A+3+x+A^3);polcoeff(A,n)}
A120592
G.f. satisfies: 5*A(x) = 4 + 4*x + A(x)^3, starting with [1,2,6].
Original entry on oeis.org
1, 2, 6, 40, 330, 3048, 30156, 312528, 3349170, 36809960, 412651668, 4700098416, 54237852708, 632762593680, 7450815536280, 88435205367456, 1056940049423682, 12708927083800296, 153636691533864900, 1866178021496170800
Offset: 0
A(x) = 1 + 2*x + 6*x^2 + 40*x^3 + 330*x^4 + 3048*x^5 + 30156*x^6 +...
A(x)^3 = 1 + 6*x + 30*x^2 + 200*x^3 + 1650*x^4 +15240*x^5 +150780*x^6 +...
-
FullSimplify[Table[SeriesCoefficient[Sum[Binomial[3*k,k]/(2*k+1)*(4+4*x)^(2*k+1)/5^(3*k+1),{k,0,Infinity}],{x,0,n}],{n,0,20}]] (* Vaclav Kotesovec, Oct 19 2012 *)
-
{a(n)=local(A=1+2*x+6*x^2+x*O(x^n));for(i=0,n,A=A+(-5*A+4+4*x+A^3)/2);polcoeff(A,n)}
A378112
Number A(n,k) of k-tuples (p_1, p_2, ..., p_k) of Dyck paths of semilength n, such that each p_i is never below p_{i-1} and the upper path p_k only touches the x-axis at its endpoints; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 2, 0, 1, 1, 3, 9, 5, 0, 1, 1, 4, 23, 55, 14, 0, 1, 1, 5, 46, 265, 400, 42, 0, 1, 1, 6, 80, 880, 3942, 3266, 132, 0, 1, 1, 7, 127, 2347, 23695, 70395, 28999, 429, 0, 1, 1, 8, 189, 5403, 105554, 824229, 1445700, 274537, 1430, 0
Offset: 0
A(3,2) = 9:
/\
/\/\ / \ /\ /\/\
(/\/\/\,/ \) (/\/\/\,/ \) (/ \/\,/ \)
.
/\ /\
/\ / \ /\ /\/\ /\ / \
(/ \/\,/ \) (/\/ \,/ \) (/\/ \,/ \)
.
/\ /\ /\
/\/\ /\/\ /\/\ / \ / \ / \
(/ \,/ \) (/ \,/ \) (/ \,/ \)
.
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, ...
0, 2, 9, 23, 46, 80, 127, ...
0, 5, 55, 265, 880, 2347, 5403, ...
0, 14, 400, 3942, 23695, 105554, 382508, ...
0, 42, 3266, 70395, 824229, 6601728, 40446551, ...
-
b:= proc(n, k) option remember; `if`(n=0, 1, 2^k*mul(
(2*(n-i)+2*k-3)/(n+2*k-1-i), i=0..k-1)*b(n-1, k))
end:
A:= proc(n, k) option remember;
b(n, k)-add(A(n-i, k)*b(i, k), i=1..n-1)
end:
seq(seq(A(n, d-n), n=0..d), d=0..10);
Showing 1-10 of 28 results.
Comments