A361745 Square array of circular Delannoy numbers A(i,j) (i >= 0, j >= 0) read by antidiagonals.
1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 6, 16, 6, 1, 1, 8, 36, 36, 8, 1, 1, 10, 64, 114, 64, 10, 1, 1, 12, 100, 264, 264, 100, 12, 1, 1, 14, 144, 510, 768, 510, 144, 14, 1, 1, 16, 196, 876, 1800, 1800, 876, 196, 16, 1, 1, 18, 256, 1386, 3648, 5010, 3648, 1386, 256, 18, 1
Offset: 0
Examples
The square array A(n,m) (n >= 0, m >= 0) begins: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 1, 2, 4, 6, 8, 10, 12, 14, 16, 18, ... 1, 4, 16, 36, 64, 100, 144, 196, 256, 324, ... 1, 6, 36, 114, 264, 510, 876, 1386, 2064, 2934, ... 1, 8, 64, 264, 768, 1800, 3648, 6664, 11264, 17928, ... . The triangle T(n,m) (0 <= m <= n) begins: [0] 1; [1] 1, 1; [2] 1, 2, 1; [3] 1, 4, 4, 1; [4] 1, 6, 16, 6, 1; [5] 1, 8, 36, 36, 8, 1; [6] 1, 10, 64, 114, 64, 10, 1; [7] 1, 12, 100, 264, 264, 100, 12, 1; [8] 1, 14, 144, 510, 768, 510, 144, 14, 1; [9] 1, 16, 196, 876, 1800, 1800, 876, 196, 16, 1;
Links
- Nate Harman, Andrew Snowden, and Noah Snyder, The circular Delannoy Category, arxiv: 2303.10814 [math.RT], 2023.
Crossrefs
Programs
-
Maple
A := (n, k) -> `if`(n*k=0, 1, 2*n*k*hypergeom([1 - n, 1 - k], [2], 2)): seq(print(seq(simplify(A(n, k)), k = 0..9)), n=0..4); # Peter Luschny, Mar 23 2023
-
Mathematica
a[n_Integer?Positive, m_Integer?Positive] := Sum[k Binomial[n, k] Binomial[m, k] 2^k, {k, 1, Min[n,m]}]
-
Python
from math import comb def A361745_A(n,m): # compute square array A(n,m) return 1 if not(m and n) else sum(comb(n-1,i)*comb(m+i,n) for i in range(max(n-m,0),n))*n<<1 # Chai Wah Wu, Mar 23 2023
Formula
A(n,m) = A(m,n).
A(n,m) = Sum_{k=0..min(n,m)} binomial(n,k)*binomial(m,k)*k*2^k for n >= 1.
A(n,m) = n*(D(n,m-1) + D(n-1,m-1)) = n*(D(n,m) - D(n-1,m)) for n,m >= 1, where D(i,j) = A008288(i,j) are the Delannoy numbers.
G.f.: 2*x*y/(1-x-y-x*y)^2 (valid for n,m > 1).
For n,m >= 1, A(n,m) = 2*n*A142978(n,m).
A(n,m) = 2*n*m*hypergeom([1-n, 1-m], [2], 2) for n,m >= 1. - Peter Luschny, Mar 23 2023
Comments