cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A120590 G.f. satisfies: 4*A(x) = 3 + x + A(x)^3, starting with [1,1,3].

Original entry on oeis.org

1, 1, 3, 19, 150, 1326, 12558, 124590, 1278189, 13449205, 144342627, 1573990275, 17389407984, 194228357568, 2189610888840, 24881753664840, 284708154606318, 3277578288381318, 37934510719585350, 441152315040444150
Offset: 0

Views

Author

Paul D. Hanna, Jun 16 2006, Jan 24 2008

Keywords

Comments

See comments in A120588 for conditions needed for an integer sequence to satisfy a functional equation of the form: r*A(x) = c + b*x + A(x)^n.

Examples

			A(x) = 1 + x + 3*x^2 + 19*x^3 + 150*x^4 + 1326*x^5 + 12558*x^6 +...
A(x)^3 = 1 + 3*x + 12*x^2 + 76*x^3 + 600*x^4 + 5304*x^5 + 50232*x^6 +...
		

Crossrefs

Programs

  • Mathematica
    FullSimplify[Table[SeriesCoefficient[Sum[Binomial[3*k,k]/(2*k+1)*(3+x)^(2*k+1)/4^(3*k+1),{k,0,Infinity}],{x,0,n}] ,{n,0,20}]] (* Vaclav Kotesovec, Oct 19 2012 *)
  • PARI
    {a(n)=local(A=1+x+3*x^2+x*O(x^n));for(i=0,n,A=A-4*A+3+x+A^3);polcoeff(A,n)}

Formula

G.f.: A(x) = 1 + Series_Reversion(1+4*x - (1+x)^3).
G.f.: A(x) = Sum_{n>=0} C(3*n,n)/(2*n+1) * (3+x)^(2*n+1) / 4^(3*n+1), due to Lagrange Inversion.
Recurrence: 13*(n-1)*n*a(n) = 81*(n-1)*(2*n-3)*a(n-1) + 3*(3*n-7)*(3*n-5)*a(n-2). - Vaclav Kotesovec, Oct 19 2012
a(n) ~ sqrt(32-18*sqrt(3))*((81+48*sqrt(3))/13)^n/(12*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 19 2012
G.f.: 4 * sin( arcsin(3 * sqrt(3) * (3 + x) / 16) / 3) / sqrt(3). - Benedict W. J. Irwin, Oct 19 2016

A244627 G.f. satisfies: A(x) = (4 + A(x)^3) / (5 - 4*x).

Original entry on oeis.org

1, 2, 10, 84, 882, 10380, 130916, 1729960, 23640770, 331357276, 4737405356, 68818101400, 1012852747220, 15070913484664, 226340757825800, 3426481380787024, 52232521742541410, 801068351764540540, 12351730365539402076, 191363830520437179960
Offset: 0

Views

Author

Paul D. Hanna, Jul 02 2014

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 10*x^2 + 84*x^3 + 882*x^4 + 10380*x^5 + 130916*x^6 +...
Compare
(5 - 4*x)*A(x) = 5 + 6*x + 42*x^2 + 380*x^3 + 4074*x^4 + 48372*x^5 +...
to:
A(x)^3 = 1 + 6*x + 42*x^2 + 380*x^3 + 4074*x^4 + 48372*x^5 + 613060*x^6 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(1 + 2*serreverse(x*(1 - 3*x - 2*x^2)/(1 + 2*x +x*O(x^n))),n)}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    {a(n)=local(A=[1], Ax=1+x); for(i=1, n, A=concat(A, 0); Ax=Ser(A); A[#A]=Vec( ( Ax^3 - (5-4*x)*Ax )/2 )[#A]); A[n+1]}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f. satisfies:
(1) A(x) = 1 + 2*Series_Reversion( x*(1 - 3*x - 2*x^2)/(1 + 2*x) ).
(2) A(x) = Sum_{n>=0} C(3*n,n)/(2*n+1) * (4 + 4*x*A(x))^(2*n+1) / 5^(3*n+1).
(3) A(x) = G(x*A(x)) and G(x) = A(x/G(x)) where G(x) = (3+x + G(x)^3)/4 is the g.f. of A120592.
Recurrence: 17*(n-1)*n*a(n) = 150*(n-1)*(2*n-3)*a(n-1) - 40*(6*n^2 - 24*n + 23)*a(n-2) + 32*(n-2)*(2*n-7)*a(n-3). - Vaclav Kotesovec, Jul 03 2014
a(n) ~ sqrt(15-9*2^(2/3)) * ((60*2^(2/3)+72*2^(1/3)+100)/17)^n / (6*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Jul 03 2014

A120593 G.f. satisfies: 5*A(x) = 4 + x + A(x)^4, starting with [1,1,6].

Original entry on oeis.org

1, 1, 6, 76, 1201, 21252, 402892, 8001412, 164321982, 3461110532, 74358814838, 1623152780808, 35897318940028, 802620009567628, 18112759482614328, 412020809942451504, 9437537418826749369, 217486633306640519124
Offset: 0

Views

Author

Paul D. Hanna, Jun 16 2006, Jan 24 2008

Keywords

Comments

See comments in A120588 for conditions needed for an integer sequence to satisfy a functional equation of the form: r*A(x) = c + b*x + A(x)^n.

Examples

			A(x) = 1 + x + 6*x^2 + 76*x^3 + 1201*x^4 + 21252*x^5 +...
A(x)^4 = 1 + 4*x + 30*x^2 + 380*x^3 + 6005*x^4 + 106260*x^5 +...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[1 + InverseSeries[Series[1+5*x - (1+x)^4, {x, 0, 20}], x], x] (* Vaclav Kotesovec, Nov 28 2017 *)
  • PARI
    {a(n)=local(A=1+x+6*x^2+x*O(x^n));for(i=0,n,A=A-5*A+4+x+A^4);polcoeff(A,n)}

Formula

G.f. satisfies:
(1) A(x) = 1 + Series_Reversion(1+5*x - (1+x)^4).
(2) A(x) = Sum_{n>=0} C(4*n,n)/(3*n+1) * (4+x)^(3*n+1)/5^(4*n+1), by Lagrange Inversion.
(3) A(x) = F(x/A(x)) and F(x) = A(x*F(x)) where F(x) = (4 + F(x)^4)/(5-x) is the g.f. of A244856. - Paul D. Hanna, Jul 09 2014
a(n) ~ 2^(-7/3 + 3*n) * (-32 + 15*10^(1/3))^(1/2 - n) / (5^(1/3) * n^(3/2) * sqrt(3*Pi)). - Vaclav Kotesovec, Nov 28 2017

A120591 Self-convolution cube of A120590, such that a(n) = 4*A120590(n) for n>=2.

Original entry on oeis.org

1, 3, 12, 76, 600, 5304, 50232, 498360, 5112756, 53796820, 577370508, 6295961100, 69557631936, 776913430272, 8758443555360, 99527014659360, 1138832618425272, 13110313153525272, 151738042878341400, 1764609260161776600
Offset: 0

Views

Author

Paul D. Hanna, Jun 16 2006

Keywords

Examples

			A(x) = 1 + 3*x + 12*x^2 + 76*x^3 + 600*x^4 + 5304*x^5 + 50232*x^6 +...
A(x)^(1/3) = 1 + x + 3*x^2 + 19*x^3 + 150*x^4 + 1326*x^5 + 12558*x^6 +...
		

Crossrefs

Cf. A120590 (A(x)^(1/3)); A120588, A120592 - A120607.

Programs

  • PARI
    {a(n)=local(A=1+x+3*x^2+x*O(x^n));for(i=0,n,A=A-4*A+3+x+A^3);polcoeff(A^3,n)}
Showing 1-4 of 4 results.