cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A120590 G.f. satisfies: 4*A(x) = 3 + x + A(x)^3, starting with [1,1,3].

Original entry on oeis.org

1, 1, 3, 19, 150, 1326, 12558, 124590, 1278189, 13449205, 144342627, 1573990275, 17389407984, 194228357568, 2189610888840, 24881753664840, 284708154606318, 3277578288381318, 37934510719585350, 441152315040444150
Offset: 0

Views

Author

Paul D. Hanna, Jun 16 2006, Jan 24 2008

Keywords

Comments

See comments in A120588 for conditions needed for an integer sequence to satisfy a functional equation of the form: r*A(x) = c + b*x + A(x)^n.

Examples

			A(x) = 1 + x + 3*x^2 + 19*x^3 + 150*x^4 + 1326*x^5 + 12558*x^6 +...
A(x)^3 = 1 + 3*x + 12*x^2 + 76*x^3 + 600*x^4 + 5304*x^5 + 50232*x^6 +...
		

Crossrefs

Programs

  • Mathematica
    FullSimplify[Table[SeriesCoefficient[Sum[Binomial[3*k,k]/(2*k+1)*(3+x)^(2*k+1)/4^(3*k+1),{k,0,Infinity}],{x,0,n}] ,{n,0,20}]] (* Vaclav Kotesovec, Oct 19 2012 *)
  • PARI
    {a(n)=local(A=1+x+3*x^2+x*O(x^n));for(i=0,n,A=A-4*A+3+x+A^3);polcoeff(A,n)}

Formula

G.f.: A(x) = 1 + Series_Reversion(1+4*x - (1+x)^3).
G.f.: A(x) = Sum_{n>=0} C(3*n,n)/(2*n+1) * (3+x)^(2*n+1) / 4^(3*n+1), due to Lagrange Inversion.
Recurrence: 13*(n-1)*n*a(n) = 81*(n-1)*(2*n-3)*a(n-1) + 3*(3*n-7)*(3*n-5)*a(n-2). - Vaclav Kotesovec, Oct 19 2012
a(n) ~ sqrt(32-18*sqrt(3))*((81+48*sqrt(3))/13)^n/(12*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 19 2012
G.f.: 4 * sin( arcsin(3 * sqrt(3) * (3 + x) / 16) / 3) / sqrt(3). - Benedict W. J. Irwin, Oct 19 2016

A120592 G.f. satisfies: 5*A(x) = 4 + 4*x + A(x)^3, starting with [1,2,6].

Original entry on oeis.org

1, 2, 6, 40, 330, 3048, 30156, 312528, 3349170, 36809960, 412651668, 4700098416, 54237852708, 632762593680, 7450815536280, 88435205367456, 1056940049423682, 12708927083800296, 153636691533864900, 1866178021496170800
Offset: 0

Views

Author

Paul D. Hanna, Jun 16 2006, Jan 24 2008

Keywords

Comments

See comments in A120588 for conditions needed for an integer sequence to satisfy a functional equation of the form: r*A(x) = c + b*x + A(x)^n.

Examples

			A(x) = 1 + 2*x + 6*x^2 + 40*x^3 + 330*x^4 + 3048*x^5 + 30156*x^6 +...
A(x)^3 = 1 + 6*x + 30*x^2 + 200*x^3 + 1650*x^4 +15240*x^5 +150780*x^6 +...
		

Crossrefs

Programs

  • Mathematica
    FullSimplify[Table[SeriesCoefficient[Sum[Binomial[3*k,k]/(2*k+1)*(4+4*x)^(2*k+1)/5^(3*k+1),{k,0,Infinity}],{x,0,n}],{n,0,20}]] (* Vaclav Kotesovec, Oct 19 2012 *)
  • PARI
    {a(n)=local(A=1+2*x+6*x^2+x*O(x^n));for(i=0,n,A=A+(-5*A+4+4*x+A^3)/2);polcoeff(A,n)}

Formula

G.f.: A(x) = 1 + Series_Reversion((1+5*x - (1+x)^3)/4).
G.f.: A(x) = Sum_{n>=0} C(3*n,n)/(2*n+1) * (4+4*x)^(2*n+1) / 5^(3*n+1), due to Lagrange Inversion.
Recurrence: 17*(n-1)*n*a(n) = 108*(n-1)*(2*n-3)*a(n-1) + 12*(3*n-7)*(3*n-5)*a(n-2). - Vaclav Kotesovec, Oct 19 2012
a(n) ~ sqrt(250-60*sqrt(15))*((108+30*sqrt(15))/17)^n/(30*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 19 2012
Showing 1-2 of 2 results.