A120591
Self-convolution cube of A120590, such that a(n) = 4*A120590(n) for n>=2.
Original entry on oeis.org
1, 3, 12, 76, 600, 5304, 50232, 498360, 5112756, 53796820, 577370508, 6295961100, 69557631936, 776913430272, 8758443555360, 99527014659360, 1138832618425272, 13110313153525272, 151738042878341400, 1764609260161776600
Offset: 0
A(x) = 1 + 3*x + 12*x^2 + 76*x^3 + 600*x^4 + 5304*x^5 + 50232*x^6 +...
A(x)^(1/3) = 1 + x + 3*x^2 + 19*x^3 + 150*x^4 + 1326*x^5 + 12558*x^6 +...
A120588
G.f. is 1 + x*c(x), where c(x) is the g.f. of the Catalan numbers (A000108).
Original entry on oeis.org
1, 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, 35357670, 129644790, 477638700, 1767263190, 6564120420, 24466267020, 91482563640, 343059613650, 1289904147324, 4861946401452, 18367353072152
Offset: 0
A(x) = 1 + x + x^2 + 2*x^3 + 5*x^4 + 14*x^5 + 42*x^6 + 132*x^7 +...
A(x)^3 = 1 + 2*x + 3*x^2 + 6*x^3 + 15*x^4 + 42*x^5 + 126*x^6 + 396*x^7 +..
More generally, given the functional equation:
r*A(x) = r-1 + b*x + A(x)^n
the series solution is:
A(x) = Sum_{i>=0} C(n*i,i)/(n*i-i+1)*(r-1+bx)^(n*i-i+1)/r^(n*i+1)
which can be expressed as:
A(x) = G( (r-1+bx)^(n-1)/r^n ) * (r-1+bx)/r
where G(x) satisfies: G(x) = 1 + x*G(x)^n .
Also we have:
A(x) = 1 + Series_Reversion[ (1 + r*x - (1+x)^n )/b ].
-
m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!( (3 - Sqrt(1-4*x))/2 )); // G. C. Greubel, Feb 18 2019
-
a[ n_] := SeriesCoefficient[ 1 + (1 - Sqrt[1 - 4 x]) / 2, {x, 0, n}]; (* Michael Somos, May 18 2015 *)
-
{a(n)=local(A=1+x+x^2+x*O(x^n));for(i=0,n,A=A-3*A+2+x+A^2);polcoeff(A,n)}
-
{a(n) = my(A); if( n<1, n==0, A = vector(n); A[1] = 1; for( k=2, n, A[k] = sum( j=1, k-1, A[j] * A[k-j])); A[n])} /* Michael Somos, Jul 23 2011 */
-
((3-sqrt(1-4*x))/2).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Feb 18 2019
A244594
G.f. satisfies: A(x) = (3 + A(x)^3) / (4 - x).
Original entry on oeis.org
1, 1, 4, 29, 263, 2672, 29088, 331749, 3912660, 47329811, 583983656, 7321173872, 92990672635, 1194113490556, 15476763809428, 202197552311829, 2659975668005367, 35205831900984144, 468468683002725372, 6263539340729569047, 84103985900174324256, 1133671250214654009000
Offset: 0
G.f.: A(x) = 1 + x + 4*x^2 + 29*x^3 + 263*x^4 + 2672*x^5 + 29088*x^6 +...
Compare
(4 - x)*A(x) = 4 + 3*x + 15*x^2 + 112*x^3 + 1023*x^4 + 10425*x^5 +...
to:
A(x)^3 = 1 + 3*x + 15*x^2 + 112*x^3 + 1023*x^4 + 10425*x^5 + 113680*x^6 +...
-
{a(n)=polcoeff(1+serreverse((1+4*x - (1+x)^3)/(1 + x +x*O(x^n))),n)}
for(n=0,30,print1(a(n),", "))
-
{a(n)=local(A=[1,1],Ax=1+x);for(i=1,n,A=concat(A,0);Ax=Ser(A);A[#A]=Vec( Ax^3 - (4-x)*Ax )[#A]);A[n+1]}
for(n=0,30,print1(a(n),", "))
A120589
Self-convolution of A120588, such that a(n) = 3*A120588(n) for n >= 2.
Original entry on oeis.org
1, 2, 3, 6, 15, 42, 126, 396, 1287, 4290, 14586, 50388, 176358, 624036, 2228700, 8023320, 29084535, 106073010, 388934370, 1432916100, 5301789570, 19692361260, 73398801060, 274447690920, 1029178840950, 3869712441972, 14585839204356
Offset: 0
A(x) = 1 + 2*x + 3*x^2 + 6*x^3 + 15*x^4 + 42*x^5 + 126*x^6 + 396*x^7 + ...
A(x)^(1/2) = 1 + x + x^2 + 2*x^3 + 5*x^4 + 14*x^5 + 42*x^6 + 132*x^7 + ...
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Guo-Niu Han, Enumeration of Standard Puzzles, 2011. [Cached copy]
- Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.
- S. Kitaev, J. Remmel and M. Tiefenbruck, Marked mesh patterns in 132-avoiding permutations I, arXiv:1201.6243 [math.CO], 2012. - From _N. J. A. Sloane_, May 09 2012
- Sergey Kitaev, Jeffrey Remmel, and Mark Tiefenbruck, Quadrant Marked Mesh Patterns in 132-Avoiding Permutations II, arXiv:1302.2274 [math.CO], 2013.
- Sergey Kitaev, Jeffrey Remmel, Mark Tiefenbruck, Quadrant Marked Mesh Patterns in 132-Avoiding Permutations II, Electronic Journal of Combinatorial Number Theory, 15 (2015), #A16.
-
m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!( (5-2*x-3*Sqrt(1-4*x))/2 )); // G. C. Greubel, Feb 18 2019
-
A120589List := proc(m) local A, P, n; A := [1,2,3]; P := [3];
for n from 1 to m - 2 do P := ListTools:-PartialSums([op(P), P[-1]]);
A := [op(A), P[-1]] od; A end: A120589List(26); # Peter Luschny, Mar 26 2022
-
Join[{1,2,3}, Table[3*(2*n)!/n!/(n+1)!, {n,2,40}]]
CoefficientList[Series[(5-2x -3Sqrt[1-4x])/2, {x, 0, 30}], x] (* G. C. Greubel, Feb 18 2019 *)
-
{a(n)=local(A=1+x+x^2+x*O(x^n));for(i=0,n,A=A-3*A+2+x+A^2);polcoeff(A^2,n)}
-
my(x='x+O('x^30)); Vec((5-2*x-3*sqrt(1-4*x))/2) \\ G. C. Greubel, Feb 18 2019
-
((5-2*x-3*sqrt(1-4*x))/2).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Feb 18 2019
Showing 1-4 of 4 results.
Comments