A120590
G.f. satisfies: 4*A(x) = 3 + x + A(x)^3, starting with [1,1,3].
Original entry on oeis.org
1, 1, 3, 19, 150, 1326, 12558, 124590, 1278189, 13449205, 144342627, 1573990275, 17389407984, 194228357568, 2189610888840, 24881753664840, 284708154606318, 3277578288381318, 37934510719585350, 441152315040444150
Offset: 0
A(x) = 1 + x + 3*x^2 + 19*x^3 + 150*x^4 + 1326*x^5 + 12558*x^6 +...
A(x)^3 = 1 + 3*x + 12*x^2 + 76*x^3 + 600*x^4 + 5304*x^5 + 50232*x^6 +...
-
FullSimplify[Table[SeriesCoefficient[Sum[Binomial[3*k,k]/(2*k+1)*(3+x)^(2*k+1)/4^(3*k+1),{k,0,Infinity}],{x,0,n}] ,{n,0,20}]] (* Vaclav Kotesovec, Oct 19 2012 *)
-
{a(n)=local(A=1+x+3*x^2+x*O(x^n));for(i=0,n,A=A-4*A+3+x+A^3);polcoeff(A,n)}
A244627
G.f. satisfies: A(x) = (4 + A(x)^3) / (5 - 4*x).
Original entry on oeis.org
1, 2, 10, 84, 882, 10380, 130916, 1729960, 23640770, 331357276, 4737405356, 68818101400, 1012852747220, 15070913484664, 226340757825800, 3426481380787024, 52232521742541410, 801068351764540540, 12351730365539402076, 191363830520437179960
Offset: 0
G.f.: A(x) = 1 + 2*x + 10*x^2 + 84*x^3 + 882*x^4 + 10380*x^5 + 130916*x^6 +...
Compare
(5 - 4*x)*A(x) = 5 + 6*x + 42*x^2 + 380*x^3 + 4074*x^4 + 48372*x^5 +...
to:
A(x)^3 = 1 + 6*x + 42*x^2 + 380*x^3 + 4074*x^4 + 48372*x^5 + 613060*x^6 +...
-
{a(n)=polcoeff(1 + 2*serreverse(x*(1 - 3*x - 2*x^2)/(1 + 2*x +x*O(x^n))),n)}
for(n=0,30,print1(a(n),", "))
-
{a(n)=local(A=[1], Ax=1+x); for(i=1, n, A=concat(A, 0); Ax=Ser(A); A[#A]=Vec( ( Ax^3 - (5-4*x)*Ax )/2 )[#A]); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
A244856
G.f. satisfies: A(x) = (4 + A(x)^4) / (5-x).
Original entry on oeis.org
1, 1, 7, 95, 1614, 30718, 626434, 13383650, 295692145, 6700461777, 154871912815, 3637093846055, 86539594779772, 2081721640140460, 50542732376144460, 1236960716959913020, 30483096737455969766, 755783491624380578998, 18839297079646725396450
Offset: 0
G.f.: A(x) = 1 + x + 7*x^2 + 95*x^3 + 1614*x^4 + 30718*x^5 +...
Compare A(x)^4 to (5-x)*A(x):
A(x)^4 = 1 + 4*x + 34*x^2 + 468*x^3 + 7975*x^4 + 151976*x^5 +...
(5-x)*A(x) = 5 + 4*x + 34*x^2 + 468*x^3 + 7975*x^4 + 151976*x^5 +...
-
CoefficientList[1 + InverseSeries[Series[(1+5*x - (1+x)^4)/(1+x), {x, 0, 20}], x], x] (* Vaclav Kotesovec, Nov 27 2017 *)
-
{a(n)=polcoeff(1 + serreverse((1+5*x - (1+x)^4)/(1 + x +x*O(x^n))), n)}
for(n=0, 30, print1(a(n), ", "))
-
{a(n)=local(A=[1], Ax=1+x); for(i=1, n, A=concat(A, 0); Ax=Ser(A); A[#A]=Vec( ( Ax^4 - (5-x)*Ax ) )[#A]); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
A245043
G.f. satisfies: A(x) = (12 + A(x)^4) / (13 - 27*x).
Original entry on oeis.org
1, 3, 15, 117, 1158, 12930, 154986, 1947582, 25317009, 337610451, 4592807895, 63488144109, 889226772132, 12592147132572, 179982549300948, 2593187073716460, 37622924436008574, 549178914689660106, 8059539548880228138, 118846096104074358942, 1760035125442960123992
Offset: 0
G.f.: A(x) = 1 + 3*x + 15*x^2 + 117*x^3 + 1158*x^4 + 12930*x^5 +...
Compare A(x)^4 to (13-27*x)*A(x):
A(x)^4 = 1 + 12*x + 114*x^2 + 1116*x^3 + 11895*x^4 + 136824*x^5 +...
(13-27*x)*A(x) = 13 + 12*x + 114*x^2 + 1116*x^3 + 11895*x^4 + 136824*x^5 +...
-
CoefficientList[1 + InverseSeries[Series[(1+13*x - (1+x)^4)/(27*(1+x)), {x, 0, 20}], x], x] (* Vaclav Kotesovec, Nov 27 2017 *)
-
{a(n)=polcoeff(1 + serreverse( (1+13*x - (1+x)^4)/(27*(1+x +x*O(x^n)))), n)}
for(n=0, 30, print1(a(n), ", "))
-
{a(n)=local(A=[1], Ax=1+x); for(i=1, n, A=concat(A, 0); Ax=Ser(A); A[#A]=Vec( ( Ax^4 - (13-27*x)*Ax )/9 )[#A]); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
A245009
G.f. satisfies: A(x) = (7 + A(x)^4) / (8 - 8*x).
Original entry on oeis.org
1, 2, 10, 88, 978, 12200, 163156, 2286448, 33138874, 492657384, 7470940300, 115115319376, 1797128902132, 28364816229008, 451870965523368, 7256283996155360, 117333885356923274, 1908844190372949224, 31221135850863938268, 513100005743085437328, 8468653781083527106012, 140314257925457275837488
Offset: 0
G.f.: A(x) = 1 + 2*x + 10*x^2 + 88*x^3 + 978*x^4 + 12200*x^5 +...
Compare A(x)^4 to 8*(1-x)*A(x):
A(x)^4 = 1 + 8*x + 64*x^2 + 624*x^3 + 7120*x^4 + 89776*x^5 +...
8*(1-x)*A(x) = 8 + 8*x + 64*x^2 + 624*x^3 + 7120*x^4 + 89776*x^5 +...
-
CoefficientList[1 + InverseSeries[Series[(1+8*x - (1+x)^4)/(8*(1+x)), {x, 0, 20}], x], x] (* Vaclav Kotesovec, Nov 27 2017 *)
-
{a(n)=polcoeff(1 + serreverse((1+8*x - (1+x)^4)/(8*(1+x +x*O(x^n)))), n)}
for(n=0, 30, print1(a(n), ", "))
-
{a(n)=local(A=[1], Ax=1+2*x); for(i=1, n, A=concat(A, 0); Ax=Ser(A); A[#A]=Vec( ( Ax^4 - 8*(1-x)*Ax )/4 )[#A]); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
Showing 1-5 of 5 results.
Comments