cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 45 results. Next

A002293 Number of dissections of a polygon: binomial(4*n, n)/(3*n + 1).

Original entry on oeis.org

1, 1, 4, 22, 140, 969, 7084, 53820, 420732, 3362260, 27343888, 225568798, 1882933364, 15875338990, 134993766600, 1156393243320, 9969937491420, 86445222719724, 753310723010608, 6594154339031800, 57956002331347120, 511238042454541545
Offset: 0

Views

Author

Keywords

Comments

The number of rooted loopless n-edge maps in the plane (planar with a distinguished outside face). - Valery A. Liskovets, Mar 17 2005
Number of lattice paths from (1,0) to (3*n+1,n) which, starting from (1,0), only utilize the steps +(1,0) and +(0,1) and additionally, the paths lie completely below the line y = (1/3)*x (i.e., if (a,b) is in the path, then b < a/3). - Joseph Cooper (jecooper(AT)mit.edu), Feb 07 2006
Number of length-n restricted growth strings (RGS) [s(0), s(1), ..., s(n-1)] where s(0) = 0 and s(k) <= s(k-1) + 3, see fxtbook link below. - Joerg Arndt, Apr 08 2011
From Wolfdieter Lang, Sep 14 2007: (Start)
a(n), n >= 1, enumerates quartic trees (rooted, ordered, incomplete) with n vertices (including the root).
Pfaff-Fuss-Catalan sequence C^{m}_n for m = 4. See the Graham et al. reference, p. 347. eq. 7.66. (Second edition, p. 361, eq. 7.67.) See also the Pólya-Szegő reference.
Also 4-Raney sequence. See the Graham et al. reference, pp. 346-347.
(End)
Bacher: "We describe the statistics of checkerboard triangulations obtained by coloring black every other triangle in triangulations of convex polygons." The current sequence (A002293) occurs on p. 12 as one of two "extremal sequences" of an array of coefficients of polynomials, whose generating functions are given in terms of hypergeometric functions. - Jonathan Vos Post, Oct 05 2007
A generating function in terms of a (labyrinthine) solution to a depressed quartic equation is given in the Copeland link for signed A005810. With D(z,t) that g.f., a g.f. for signed A002293 is {[-1+1/D(z,t)]/(4t)}^(1/3). - Tom Copeland, Oct 10 2012
For a relation to the inviscid Burgers's equation, see A001764. - Tom Copeland, Feb 15 2014
For relations to compositional inversion, the Legendre transform, and convex geometry, see the Copeland, the Schuetz and Whieldon, and the Gross (p. 58) links. - Tom Copeland, Feb 21 2017 (See also Gross et al. in A062994. - Tom Copeland, Dec 24 2019)
This is the number of A'Campo bicolored forests of degree n and co-dimension 0. This can be shown using generating functions or a combinatorial approach. See Combe and Jugé link below. - Noemie Combe, Feb 28 2017
Conjecturally, a(n) is the number of 3-uniform words over the alphabet [n] that avoid the patterns 231 and 221 (see the Defant and Kravitz link). - Colin Defant, Sep 26 2018
The compositional inverse o.g.f. pair in Copeland's comment above are related to a pair of quantum fields in Balduf's thesis by Theorem 4.2 on p. 92. Cf. A001764. - Tom Copeland, Dec 13 2019
a(n) is the total number of down steps before the first up step in all 3_1-Dyck paths of length 4*n. A 3_1-Dyck path is a lattice path with steps (1, 3), (1, -1) that starts and ends at y = 0 and stays above the line y = -1. - Sarah Selkirk, May 10 2020
a(n) is the number of pairs (A<=B) of noncrossing partitions of [2n] such that every block of A has exactly two elements. In fact, it is proved that a(n) is the number of planar tied arc diagrams with n arcs (see Aicardi link below). A planar diagram with n arcs represents a noncrossing partition A of [2n] with n blocks, each block containing the endpoints of one arc; each tie connects two arcs, so that the ties define a partition B >= A: the endpoints of two arcs connected by a tie belong to the same block of B. Ties do not cross arcs nor other ties iff B has a planar diagram, i.e., B is a noncrossing partition. - Francesca Aicardi, Nov 07 2022
Dropping the initial 1 (starting 1, 4, 22 with offset 1) yields the REVERT transformation 1, -4 ,10, -20, 35.. essentially A000292 without leading 0. - R. J. Mathar, Aug 17 2023
Number of rooted polyominoes composed of n pentagonal cells of the hyperbolic regular tiling with Schläfli symbol {5,oo}. A rooted polyomino has one external edge identified, and chiral pairs are counted as two. A stereographic projection of the {5,oo} tiling on the Poincaré disk can be obtained via the Christensson link. - Robert A. Russell, Jan 27 2024
This is instance k = 4 of the generalized Catalan family {C(k, n)}A130564.%20-%20_Wolfdieter%20Lang">{n>=0} given in a comment of A130564. - _Wolfdieter Lang, Feb 05 2024
a(n) is the cardinality of the planar ramified Jones monoid PR(J_n). - Diego Arcis, Nov 21 2024

Examples

			There are a(2) = 4 quartic trees (vertex degree <= 4 and 4 possible branchings) with 2 vertices (one of them the root). Adding one more branch (one more vertex) to these four trees yields 4*4 + 6 = 22 = a(3) such trees.
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 23.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, pp. 200, 347.
  • Peter Hilton and Jean Pedersen, Catalan numbers, their generalization, and their uses, Math. Intelligencer 13 (1991), no. 2, 64-75.
  • V. A. Liskovets and T. R. Walsh, Enumeration of unrooted maps on the plane, Rapport technique, UQAM, No. 2005-01, Montreal, Canada, 2005.
  • G. Pólya and G. Szegő, Problems and Theorems in Analysis, Springer-Verlag, Heidelberg, New York, 2 vols., 1972, Vol. 1, problem 211, p. 146 with solution on p. 348.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=3 of triangle A062993 and A070914.
Cf. A000260, A002295, A002296, A027836, A062994, A346646 (binomial transform), A346664 (inverse binomial transform).
Polyominoes: A005038 (oriented), A005040 (unoriented), A369471 (chiral), A369472 (achiral), A001764 {4,oo}, A002294 {6,oo}.
Cf. A130564 (for generalized Catalan C(k, n), for = 4).

Programs

  • GAP
    List([0..22],n->Binomial(4*n,n)/(3*n+1)); # Muniru A Asiru, Nov 01 2018
  • Magma
    [ Binomial(4*n,n)/(3*n+1): n in [0..50]]; // Vincenzo Librandi, Apr 19 2011
    
  • Maple
    series(RootOf(g = 1+x*g^4, g),x=0,20); # Mark van Hoeij, Nov 10 2011
    seq(binomial(4*n, n)/(3*n+1),n=0..20); # Robert FERREOL, Apr 02 2015
    # Using the integral representation above:
    Digits:=6;
    R:=proc(x)((I + sqrt(3))*(4*sqrt(256 - 27*x) - 12*I*sqrt(3)*sqrt(x))^(1/3))/16 - ((I - sqrt(3))*(4*sqrt(256 - 27*x) + 12*I*sqrt(3)*sqrt(x))^(1/3))/16;end;
    W:=proc(x) x^(-3/4) * sqrt(4*R(x) - 3^(3/4)*x^(1/4)/sqrt(R(x)))/(2*3^(1/4)*Pi);end;
    # Attention: W(x) is singular at x = 0. Integration is done from  a very small positive x to x = 256/27.
    # For a(8):  ... gives 420732
    evalf(int(x^8*W(x),x=0.000001..256/27));
    # Karol A. Penson, Jul 05 2024
  • Mathematica
    CoefficientList[InverseSeries[ Series[ y - y^4, {y, 0, 60}], x], x][[Range[2, 60, 3]]]
    Table[Binomial[4n,n]/(3n+1),{n,0,25}] (* Harvey P. Dale, Apr 18 2011 *)
    CoefficientList[1 + InverseSeries[Series[x/(1 + x)^4, {x, 0, 60}]], x] (* Gheorghe Coserea, Aug 12 2015 *)
    terms = 22; A[] = 0; Do[A[x] = 1 + x*A[x]^4 + O[x]^terms, terms];
    CoefficientList[A[x], x] (* Jean-François Alcover, Jan 13 2018 *)
  • PARI
    a(n)=binomial(4*n,n)/(3*n+1) /* Charles R Greathouse IV, Jun 16 2011 */
    
  • PARI
    my(x='x+O('x^33)); Vec(1 + serreverse(x/(1+x)^4)) \\ Gheorghe Coserea, Aug 12 2015
    
  • Python
    A002293_list, x = [1], 1
    for n in range(100):
        x = x*4*(4*n+3)*(4*n+2)*(4*n+1)//((3*n+2)*(3*n+3)*(3*n+4))
        A002293_list.append(x) # Chai Wah Wu, Feb 19 2016
    

Formula

O.g.f. satisfies: A(x) = 1 + x*A(x)^4 = 1/(1 - x*A(x)^3).
a(n) = binomial(4*n,n-1)/n, n >= 1, a(0) = 1. From the Lagrange series of the o.g.f. A(x) with its above given implicit equation.
From Karol A. Penson, Apr 02 2010: (Start)
Integral representation as n-th Hausdorff power moment of a positive function on the interval [0, 256/27]:
a(n) = Integral_{x=0..256/27}(x^n((3/256) * sqrt(2) * sqrt(3) * ((2/27) * 3^(3/4) * 27^(1/4) * 256^(/4) * hypergeom([-1/12, 1/4, 7/12], [1/2, 3/4], (27/256)*x)/(sqrt(Pi) * x^(3/4)) - (2/27) * sqrt(2) * sqrt(27) * sqrt(256) * hypergeom([1/6, 1/2, 5/6], [3/4, 5/4], (27/256)*x)/ (sqrt(Pi) * sqrt(x)) - (1/81) * 3^(1/4) * 27^(3/4) * 256^(1/4) * hypergeom([5/12, 3/4, 13/12], [5/4, 3/2], (27/256)*x/(sqrt(Pi)*x^(1/4)))/sqrt(Pi))).
This representation is unique as it represents the solution of the Hausdorff moment problem.
O.g.f.: hypergeom([1/4, 1/2, 3/4], [2/3, 4/3], (256/27)*x);
E.g.f.: hypergeom([1/4, 1/2, 3/4], [2/3, 1, 4/3], (256/27)*x). (End)
a(n) = upper left term in M^n, M = the production matrix:
1, 1
3, 3, 1
6, 6, 3, 1
...
(where 1, 3, 6, 10, ...) is the triangular series. - Gary W. Adamson, Jul 08 2011
O.g.f. satisfies g = 1+x*g^4. If h is the series reversion of x*g, so h(x*g)=x, then (x-h(x))/x^2 is the o.g.f. of A006013. - Mark van Hoeij, Nov 10 2011
a(n) = binomial(4*n+1, n)/(4*n+1) = A062993(n+2,2). - Robert FERREOL, Apr 02 2015
a(n) = Sum_{i=0..n-1} Sum_{j=0..n-1-i} Sum_{k=0..n-1-i-j} a(i)*a(j)*a(k)*a(n-1-i-j-k) for n>=1; and a(0) = 1. - Robert FERREOL, Apr 02 2015
a(n) ~ 2^(8*n+1/2) / (sqrt(Pi) * n^(3/2) * 3^(3*n+3/2)). - Vaclav Kotesovec, Jun 03 2015
From Peter Bala, Oct 16 2015: (Start)
A(x)^2 is o.g.f. for A069271; A(x)^3 is o.g.f. for A006632;
A(x)^5 is o.g.f. for A196678; A(x)^6 is o.g.f. for A006633;
A(x)^7 is o.g.f. for A233658; A(x)^8 is o.g.f. for A233666;
A(x)^9 is o.g.f. for A006634; A(x)^10 is o.g.f. for A233667. (End)
D-finite with recurrence: a(n+1) = a(n)*4*(4*n + 3)*(4*n + 2)*(4*n + 1)/((3*n + 2)*(3*n + 3)*(3*n + 4)). - Chai Wah Wu, Feb 19 2016
E.g.f.: F([1/4, 1/2, 3/4], [2/3, 1, 4/3], 256*x/27), where F is the generalized hypergeometric function. - Stefano Spezia, Dec 27 2019
x*A'(x)/A(x) = (A(x) - 1)/(- 3*A(x) + 4) = x + 7*x^2 + 55*x^3 + 455*x^4 + ... is the o.g.f. of A224274. Cf. A001764 and A002294 - A002296. - Peter Bala, Feb 04 2022
a(n) = hypergeom([1 - n, -3*n], [2], 1). Row sums of A173020. - Peter Bala, Aug 31 2023
G.f.: t*exp(4*t*hypergeom([1, 1, 5/4, 3/2, 7/4], [4/3, 5/3, 2, 2], (256*t)/27))+1. - Karol A. Penson, Dec 20 2023
From Karol A. Penson, Jul 03 2024: (Start)
a(n) = Integral_{x=0..256/27} x^(n)*W(x)dx, n>=0, where W(x) = x^(-3/4) * sqrt(4*R(x) - 3^(3/4)*x^(1/4)/sqrt(R(x)))/(2*3^(1/4)*Pi), with R(x) = ((i + sqrt(3))*(4*sqrt(256 - 27*x) -12*i*sqrt(3*x))^(1/3))/16 - ((i - sqrt(3))*(4*sqrt(256 - 27*x) + 12*i* sqrt(3*x))^(1/3))/16, where i is the imaginary unit.
The elementary function W(x) is positive on the interval x = (0, 256/27) and is equal to the combination of hypergeometric functions in my formula from 2010; see above.
(Pi*W(x))^6 satisfies an algebraic equation of order 6, with integer polynomials as coefficients. (End)
G.f.: (Sum_{n >= 0} binomial(4*n+1, n)*x^n) / (Sum_{n >= 0} binomial(4*n, n)*x^n). - Peter Bala, Dec 14 2024
G.f. A(x) satisfies A(x) = 1/A(-x*A(x)^7). - Seiichi Manyama, Jun 16 2025

A006013 a(n) = binomial(3*n+1,n)/(n+1).

Original entry on oeis.org

1, 2, 7, 30, 143, 728, 3876, 21318, 120175, 690690, 4032015, 23841480, 142498692, 859515920, 5225264024, 31983672534, 196947587823, 1219199353190, 7583142491925, 47365474641870, 296983176369495, 1868545312633440, 11793499763070480
Offset: 0

Views

Author

Keywords

Comments

Enumerates pairs of ternary trees [Knuth, 2014]. - N. J. A. Sloane, Dec 09 2014
G.f. (offset 1) is series reversion of x - 2x^2 + x^3.
Hankel transform is A005156(n+1). - Paul Barry, Jan 20 2007
a(n) = number of ways to connect 2*n - 2 points labeled 1, 2, ..., 2*n-2 in a line with 0 or more noncrossing arcs above the line such that each maximal contiguous sequence of isolated points has even length. For example, with arcs separated by dashes, a(3) = 7 counts {} (no arcs), 12, 14, 23, 34, 12-34, 14-23. It does not count 13 because 2 is an isolated point. - David Callan, Sep 18 2007
In my 2003 paper I introduced L-algebras. These are K-vector spaces equipped with two binary operations > and < satisfying (x > y) < z = x > (y < z). In my arXiv paper math-ph/0709.3453 I show that the free L-algebra on one generator is related to symmetric ternary trees with odd degrees, so the dimensions of the homogeneous components are 1, 2, 7, 30, 143, .... These L-algebras are closely related to the so-called triplicial-algebras, 3 associative operations and 3 relations whose free object is related to even trees. - Philippe Leroux (ph_ler_math(AT)yahoo.com), Oct 05 2007
a(n-1) is also the number of projective dependency trees with n nodes. - Marco Kuhlmann (marco.kuhlmann(AT)lingfil.uu.se), Apr 06 2010
Number of subpartitions of [1^2, 2^2, ..., n^2]. - Franklin T. Adams-Watters, Apr 13 2011
a(n) = sum of (n+1)-th row terms of triangle A143603. - Gary W. Adamson, Jul 07 2011
Also the number of Dyck n-paths with up steps colored in two ways (N or A) and avoiding NA. The 7 Dyck 2-paths are NDND, ADND, NDAD, ADAD, NNDD, ANDD, and AADD. - David Scambler, Jun 24 2013
a(n) is also the number of permutations avoiding 213 in the classical sense which can be realized as labels on an increasing strict binary tree with 2n-1 nodes. See A245904 for more information on increasing strict binary trees. - Manda Riehl Aug 07 2014
With offset 1, a(n) is the number of ordered trees (A000108) with n non-leaf vertices and n leaf vertices such that every non-leaf vertex has a leaf child (and hence exactly one leaf child). - David Callan, Aug 20 2014
a(n) is the number of paths in the plane with unit east and north steps, never going above the line x=2y, from (0,0) to (2n+1,n). - Ira M. Gessel, Jan 04 2018
a(n) is the number of words on the alphabet [n+1] that avoid the patterns 231 and 221 and contain exactly one 1 and exactly two occurrences of every other letter. - Colin Defant, Sep 26 2018
a(n) is the number of Motzkin paths of length 3n with n of each type of step, such that (1, 1) and (1, 0) alternate (ignoring (-1, 1) steps). All paths start with a (1, 1) step. - Helmut Prodinger, Apr 08 2019
Hankel transform omitting a(0) is A051255(n+1). - Michael Somos, May 15 2022
If f(x) is the generating function for (-1)^n*a(n), a real solution of the equation y^3 - y^2 - x = 0 is given by y = 1 + x*f(x). In particular 1 + f(1) is Narayana's cow constant, A092526, aka the "supergolden" ratio. - R. James Evans, Aug 09 2023
This is instance k = 2 of the family {c(k, n+1)}A130564.%20_Wolfdieter%20Lang">{n>=0} described in A130564. _Wolfdieter Lang, Feb 04 2024
Also the number of quadrangulations of a (2n+4)-gon which do not contain any diagonals incident to a fixed vertex. - Esther Banaian, Mar 12 2025

Examples

			a(3) = 30 since the top row of Q^3 = (12, 12, 5, 1).
G.f. = 1 + 2*x + 7*x^2 + 30*x^3 + 143*x^4 + 728*x^5 + 3876*x^6 + 21318*x^7 + ... - _Michael Somos_, May 15 2022
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

These are the odd indices of A047749.
Cf. A305574 (the same with offset 1 and the initial 1 replaced with 5).
Cf. A130564 (comment on c(k, n+1)).

Programs

  • Haskell
    a006013 n = a007318 (3 * n + 1) n `div` (n + 1)
    a006013' n = a258708 (2 * n + 1) n
    -- Reinhard Zumkeller, Jun 22 2015
    
  • Magma
    [Binomial(3*n+1,n)/(n+1): n in [0..30]]; // Vincenzo Librandi, Mar 29 2015
    
  • Mathematica
    Binomial[3#+1,#]/(#+1)&/@Range[0,30]  (* Harvey P. Dale, Mar 16 2011 *)
  • PARI
    A006013(n) = binomial(3*n+1,n)/(n+1) \\ M. F. Hasler, Jan 08 2024
    
  • Python
    from math import comb
    def A006013(n): return comb(3*n+1,n)//(n+1) # Chai Wah Wu, Jul 30 2022
  • Sage
    def A006013_list(n) :
        D = [0]*(n+1); D[1] = 1
        R = []; b = false; h = 1
        for i in range(2*n) :
            for k in (1..h) : D[k] += D[k-1]
            if b : R.append(D[h]); h += 1
            b = not b
        return R
    A006013_list(23) # Peter Luschny, May 03 2012
    

Formula

G.f. is square of g.f. for ternary trees, A001764 [Knuth, 2014]. - N. J. A. Sloane, Dec 09 2014
Convolution of A001764 with itself: 2*C(3*n + 2, n)/(3*n + 2), or C(3*n + 2, n+1)/(3*n + 2).
G.f.: (4/(3*x)) * sin((1/3)*arcsin(sqrt(27*x/4)))^2.
G.f.: A(x)/x with A(x)=x/(1-A(x))^2. - Vladimir Kruchinin, Dec 26 2010
From Gary W. Adamson, Jul 14 2011: (Start)
a(n) is the top left term in M^n, where M is the infinite square production matrix:
2, 1, 0, 0, 0, ...
3, 2, 1, 0, 0, ...
4, 3, 2, 1, 0, ...
5, 4, 3, 2, 1, ...
... (End)
From Gary W. Adamson, Aug 11 2011: (Start)
a(n) is the sum of top row terms in Q^n, where Q is the infinite square production matrix as follows:
1, 1, 0, 0, 0, ...
2, 2, 1, 0, 0, ...
3, 3, 2, 1, 0, ...
4, 4, 3, 2, 1, ...
... (End)
D-finite with recurrence: 2*(n+1)*(2n+1)*a(n) = 3*(3n-1)*(3n+1)*a(n-1). - R. J. Mathar, Dec 17 2011
a(n) = 2*A236194(n)/n for n > 0. - Bruno Berselli, Jan 20 2014
a(n) = A258708(2*n+1, n). - Reinhard Zumkeller, Jun 22 2015
From Ilya Gutkovskiy, Dec 29 2016: (Start)
E.g.f.: 2F2([2/3, 4/3]; [3/2,2]; 27*x/4).
a(n) ~ 3^(3*n+3/2)/(sqrt(Pi)*4^(n+1)*n^(3/2)). (End)
a(n) = A110616(n+1, 1). - Ira M. Gessel, Jan 04 2018
0 = v0*(+98415*v2 -122472*v3 +32340*v4) +v1*(+444*v3 -2968*v4) +v2*(-60*v2 +56*v3 +64*v4) where v0=a(n)^2, v1=a(n)*a(n+1), v2=a(n+1)^2, v3=a(n+1)*a(n+2), v4=a(n+2)^2 for all n in Z if a(-1)=-2/3 and a(n)=0 for n<-1. - Michael Somos, May 15 2022
a(n) = (1/4^n) * Product_{1 <= i <= j <= 2*n} (2*i + j + 2)/(2*i + j - 1). Cf. A000260. - Peter Bala, Feb 21 2023
From Karol A. Penson, Jun 02 2023: (Start)
a(n) = Integral_{x=0..27/4} x^n*W(x) dx, where
W(x) = (((9 + sqrt(81 - 12*x))^(2/3) - (9 - sqrt(81 - 12*x))^(2/3)) * 2^(1/3) * 3^(1/6)) / (12 * Pi * x^(1/3)), for x in (0, 27/4).
This integral representation is unique as W(x) is the solution of the Hausdorff power moment problem. Using only the definition of a(n), W(x) can be proven to be positive. W(x) is singular at x = 0, with the singularity x^(-1/3), and for x > 0 is monotonically decreasing to zero at x = 27/4. At x = 27/4 the first derivative of W(x) is infinite. (End)
G.f.: hypergeometric([2/3,1,4/3], [3/2,2], (3^3/2^2)*x). See the e.g.f. above. - Wolfdieter Lang, Feb 04 2024
a(n) = A024485(n+1)/3. - Michael Somos, Oct 14 2024
G.f.: (Sum_{n >= 0} binomial(3*n+2, n)*x^n) / (Sum_{n >= 0} binomial(3*n, n)*x^n) = (B(x) - 1)/(x*B(x)), where B(x) = Sum_{n >= 0} binomial(3*n, n)/(2*n+1) * x^n is the g.f. of A001764. - Peter Bala, Dec 13 2024
The g.f. A(x) is uniquely determined by the conditions A(0) = 1 and [x^n] A(x)^(-n) = -2 for all n >= 1. Cf. A006632. - Peter Bala, Jul 24 2025

Extensions

Edited by N. J. A. Sloane, Feb 21 2008

A069271 a(n) = binomial(4*n+1,n)*2/(3*n+2).

Original entry on oeis.org

1, 2, 9, 52, 340, 2394, 17710, 135720, 1068012, 8579560, 70068713, 580034052, 4855986044, 41043559340, 349756577100, 3001701610320, 25921837477692, 225083787458904, 1963988670706228, 17211860478150800, 151433425446423120
Offset: 0

Views

Author

Henry Bottomley, Mar 12 2002

Keywords

Comments

This sequence counts the set B_n of plane trees defined in the Poulalhon and Schaeffer link (Definition 2.2 and Section 4.2, Proposition 4). - David Callan, Aug 20 2014
a(n) is the number of lattice paths of length 4n starting and ending on the x-axis consisting of steps {(1, 1), (1, -3)} that remain on or above the line y=-1. - Sarah Selkirk, Mar 31 2020
a(n) is the number of ordered pairs of 4-ary trees with a (summed) total of n internal nodes. - Sarah Selkirk, Mar 31 2020

Examples

			a(3) = C(4*3+1,3)*2/(3*3+2) = C(13,3)*2/11 = 286*2/11 = 52.
a(3) = 52 since the top row of M^3 = (22, 22, 7, 1).
1 + 2*x + 9*x^2 + 52*x^3 + 340*x^4 + 2394*x^5 + 17710*x^6 + 135720*x^7 + ...
q + 2*q^3 + 9*q^5 + 52*q^7 + 340*q^9 + 2394*q^11 + 17710*q^13 + 135720*q^15 + ...
		

Crossrefs

Cf. A002293, A006013, A006632, A069270 for similar generalized Catalan sequences.

Programs

  • Magma
    [2*Binomial(4*n+1, n)/(3*n+2): n in [0..20]];  // Bruno Berselli, Mar 04 2011
  • Maple
    BB:=[T,{T=Prod(Z,Z,Z,F,F),F=Sequence(B),B=Prod(F,F,F,Z)}, unlabeled]: seq(count(BB,size=i),i=3..23); # Zerinvary Lajos, Apr 22 2007
  • Mathematica
    f[n_] := 2 Binomial[4 n + 1, n]/(3 n + 2); Array[f, 21, 0] (* Robert G. Wilson v *)
  • PARI
    a(n)=if(n<0,0,polcoeff(serreverse(x/(1+x^2)^2+O(x^(2*n+2))),2*n+1)) /* Ralf Stephan */
    
  • PARI
    {a(n) =  binomial(4*n + 2, n)*2 / (2*n + 1)} /* Michael Somos, Mar 28 2012 */
    
  • PARI
    {a(n) =  local(A); if( n<0, 0, A = 1 + O(x); for( k=1, n, A = (1 + x * A^2)^2); polcoeff( A, n))} /* Michael Somos, Mar 28 2012 */
    

Formula

a(n) = A069270(n+1, n) = A005810(n)*A016813(n)/A060544(n+1)
O.g.f. A(x) satisfies 2*x^2*A(x)^3 = 1-2*x*A(x)-sqrt(1-4*x*A(x)). - Vladimir Kruchinin, Feb 23 2011
a(n) is the sum of top row terms in M^n, where M is the infinite square production matrix with the triangular series in each column as follows, with the rest zeros:
1, 1, 0, 0, 0, 0, ...
3, 3, 1, 0, 0, 0, ...
6, 6, 3, 1, 0, 0, ...
10, 10, 6, 3, 1, 0, ...
15, 15, 10, 6, 3, 1, ...
... - Gary W. Adamson, Aug 11 2011
Given g.f. A(x) then B(x) = x * A(x^2) satisfies x = B(x) / (1 + B(x)^2)^2. - Michael Somos, Mar 28 2012
Given g.f. A(x) then A(x) = (1 + x * A(x)^2)^2. - Michael Somos, Mar 28 2012
a(n) / (n+1) = A000260(n). - Michael Somos, Mar 28 2012
REVERT transform is A115141. - Michael Somos, Mar 28 2012
D-finite with recurrence 3*n*(3*n+2)*(3*n+1)*a(n) - 8*(4*n+1)*(2*n-1)*(4*n-1)*a(n-1) = 0. - R. J. Mathar, Jun 07 2013
a(n) = 2*binomial(4n+1,n-1)/n for n>0, a(0)=1. - Bruno Berselli, Jan 19 2014
G.f.: hypergeom([1/2, 3/4, 5/4], [4/3, 5/3], (256/27)*x). - Robert Israel, Aug 24 2014
From Peter Bala, Oct 08 2015: (Start)
O.g.f. A(x) = (1/x) * series reversion (x/C(x)^2), where C(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. for the Catalan numbers A000108. Cf. A163456.
(1/2)*x*A'(x)/A(x) is the o.g.f. for A224274. (End)
E.g.f.: hypergeom([1/2, 3/4, 5/4], [1, 4/3, 5/3], (256/27)*x). - Karol A. Penson, Jun 26 2017
a(n) = binomial(4*n+2,n)/(2*n+1). - Alexander Burstein, Nov 08 2021

A118971 a(n) = binomial(5*n+3,n)/(n+1).

Original entry on oeis.org

1, 4, 26, 204, 1771, 16380, 158224, 1577532, 16112057, 167710664, 1772645420, 18974357220, 205263418941, 2240623268512, 24648785802336, 272994644359580, 3041495503591365, 34064252968167180, 383302465665133014
Offset: 0

Views

Author

Paul Barry, May 07 2006

Keywords

Comments

A quadrisection of A118968.
For n >= 1, a(n-1) is the number of lattice paths from (0,0) to (4n,n) using only the steps (1,0) and (0,1) and which stay strictly below the line y = x/4 except at the path's endpoints. - Lucas A. Brown, Aug 21 2020
This is instance k = 4 of the family {c(k, n+1)}A130564.%20-%20_Wolfdieter%20Lang">{n>=0} given in a comment in A130564. - _Wolfdieter Lang, Feb 04 2024

Crossrefs

Cf. A000108, A006013, A006632, A130564, A130565, A234466, A234513, A234573, A235340 (members of the same family).

Programs

  • Mathematica
    Table[4*Binomial[5n+3,n]/(4n+4),{n,0,30}] (* Harvey P. Dale, Apr 09 2012 *)

Formula

G.f.: If the inverse series of y*(1-y)^4 is G(x) then A(x)=G(x)/x.
D-finite with recurrence 8*(4*n+1)*(2*n+1)*(4*n+3)*(n+1)*a(n) -5*(5*n+1)*(5*n+2)*(5*n+3)*(5*n-1)*a(n-1)=0. - R. J. Mathar, Nov 26 2012
a(n) = (4/5)*binomial(5*(n+1),n+1)/(5*(n+1)-1). - Bruno Berselli, Jan 17 2014
E.g.f.: 4F4(4/5,6/5,7/5,8/5; 5/4,3/2,7/4,2; 3125*x/256). - Ilya Gutkovskiy, Jan 23 2018
G.f.: 5F4([4,5,6,7,8]/5, [5,6,7,8]/4; (5^5/4^4)*x) = (4/(5*x))*(1 - 4F3([-1,1,2,3]/5, [1,2,3]/4; (5^5/4^4)*x)). - Wolfdieter Lang, Feb 15 2024

A130564 Member k=5 of a family of generalized Catalan numbers.

Original entry on oeis.org

1, 5, 40, 385, 4095, 46376, 548340, 6690585, 83615350, 1064887395, 13770292256, 180320238280, 2386316821325, 31864803599700, 428798445360120, 5809228810425801, 79168272296871450, 1084567603590147950
Offset: 1

Views

Author

Wolfdieter Lang, Jul 13 2007

Keywords

Comments

The generalized Catalan numbers C(k,n):= binomial(k*n+1,n)/(k*n+1) become for negative k=-|k|, with |k|>=2, ((-1)^(n-1))*binomial((|k|+1)*n-2,n)/(|k|*n-1), n>=0.
The family c(k,n):=binomial((k+1)*n-2,n)/(k*n-1), n>=1, has the members A000108, A006013, A006632, A118971 for k=1,2,3,4, respectively (but the offset there is 0).
The members of the C(k,n) family for positive k are: A000012 (powers of 1), A000108, A001764, A002293, A002294, A002295, A002296, A007556, A062994, for k=1..9.

References

  • Ronald L. Graham, Donald E. Knuth and Oren Patashnik, Concrete Mathematics, Addison-Wesley, Reading, MA, 2nd ed. 1994, pp. 200, 363.

Crossrefs

Programs

  • Mathematica
    Rest@ CoefficientList[InverseSeries[Series[y (1 - y)^5, {y, 0, 18}], x], x] (* Michael De Vlieger, Oct 13 2019 *)

Formula

a(n) = binomial((k+1)*n-2,n)/(k*n-1), with k=5.
G.f.: inverse series of y*(1-y)^5.
a(n) = (5/6)*binomial(6*n,n)/(6*n-1). [Bruno Berselli, Jan 17 2014]
From Wolfdieter Lang, Feb 06 2020: (Start)
G.f.: (5/6)*(1 - hypergeom([-1, 1, 2, 3, 4]/6, [1, 2, 3, 4]/5,(6^6/5^5)*x)).
E.g.f.: (5/6)*(1 - hypergeom([-1, 1, 2, 3, 4]/6, [1, 2, 3, 4, 5]/5,(6^6/5^5)*x)). (End)
D-finite with recurrence 5*n*(5*n-4)*(5*n-3)*(5*n-2)*(5*n-1)*a(n) -72*(6*n-7)*(3*n-1)*(2*n-1)*(3*n-2)*(6*n-5)*a(n-1)=0. - R. J. Mathar, May 07 2021

A262977 a(n) = binomial(4*n-1,n).

Original entry on oeis.org

1, 3, 21, 165, 1365, 11628, 100947, 888030, 7888725, 70607460, 635745396, 5752004349, 52251400851, 476260169700, 4353548972850, 39895566894540, 366395202809685, 3371363686069236, 31074067324187580, 286845713747883300, 2651487106659130740, 24539426037817994160
Offset: 0

Views

Author

Vladimir Kruchinin, Oct 06 2015

Keywords

Comments

From Gus Wiseman, Sep 28 2022: (Start)
Also the number of integer compositions of 4n with alternating sum 2n, where the alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i. These compositions are ranked by A348614. The a(12) = 21 compositions are:
(6,2) (1,2,5) (1,1,5,1) (1,1,1,1,4)
(2,2,4) (2,1,4,1) (1,1,2,1,3)
(3,2,3) (3,1,3,1) (1,1,3,1,2)
(4,2,2) (4,1,2,1) (1,1,4,1,1)
(5,2,1) (5,1,1,1) (2,1,1,1,3)
(2,1,2,1,2)
(2,1,3,1,1)
(3,1,1,1,2)
(3,1,2,1,1)
(4,1,1,1,1)
The following pertain to this interpretation:
- The case of partitions is A000712, reverse A006330.
- Allowing any alternating sum gives A013777 (compositions of 4n).
- A011782 counts compositions of n.
- A034871 counts compositions of 2n with alternating sum 2k.
- A097805 counts compositions by alternating (or reverse-alternating) sum.
- A103919 counts partitions by sum and alternating sum (reverse: A344612).
- A345197 counts compositions by length and alternating sum.
(End)

Crossrefs

Programs

  • Magma
    [Binomial(4*n-1,n): n in [0..20]]; // Vincenzo Librandi, Oct 06 2015
    
  • Mathematica
    Table[Binomial[4 n - 1, n], {n, 0, 40}] (* Vincenzo Librandi, Oct 06 2015 *)
  • Maxima
    B(x):=sum(binomial(4*n-1,n-1)*3/(4*n-1)*x^n,n,1,30);
    taylor(x*diff(B(x),x,1)/B(x),x,0,20);
    
  • PARI
    a(n) = binomial(4*n-1,n); \\ Michel Marcus, Oct 06 2015

Formula

G.f.: A(x)=x*B'(x)/B(x), where B(x) if g.f. of A006632.
a(n) = Sum_{k=0..n}(binomial(n-1,n-k)*binomial(3*n,k)).
a(n) = 3*A224274(n), for n > 0. - Michel Marcus, Oct 12 2015
From Peter Bala, Nov 04 2015: (Start)
The o.g.f. equals f(x)/g(x), where f(x) is the o.g.f. for A005810 and g(x) is the o.g.f. for A002293. More generally, f(x)*g(x)^k is the o.g.f. for the sequence binomial(4*n + k,n). Cf. A005810 (k = 0), A052203 (k = 1), A257633 (k = 2), A224274 (k = 3) and A004331 (k = 4). (End)
a(n) = [x^n] 1/(1 - x)^(3*n). - Ilya Gutkovskiy, Oct 03 2017
a(n) = A071919(3n-1,n+1) = A097805(4n,n+1). - Gus Wiseman, Sep 28 2022
From Peter Bala, Feb 14 2024: (Start)
a(n) = (-1)^n * binomial(-3*n, n).
a(n) = hypergeom([1 - 3*n, -n], [1], 1).
The g.f. A(x) satisfies A(x/(1 + x)^4) = 1/(1 - 3*x). (End)
a(n) = Sum_{k = 0..n} binomial(2*n+k-1, k)*binomial(2*n-k-1, n-k). - Peter Bala, Sep 16 2024
G.f.: 1/(4-3*g) where g = 1+x*g^4 is the g.f. of A002293. - Seiichi Manyama, Aug 17 2025

A055113 Number of bracketings of 0^0^0^...^0, with n 0's, giving the result 0, with conventions that 0^0 = 1^0 = 1^1 = 1, 0^1 = 0.

Original entry on oeis.org

0, 1, 0, 1, 1, 5, 11, 41, 120, 421, 1381, 4840, 16721, 59357, 210861, 759071, 2744393, 10000437, 36609977, 134750450, 498016753, 1848174708, 6882643032, 25715836734, 96365606679, 362102430069, 1364028272451, 5150156201026, 19486989838057, 73880877535315
Offset: 0

Views

Author

Jeppe Stig Nielsen, Jun 15 2000

Keywords

Comments

Total number of bracketings of 0^0^...^0 is A000108(n-1) (this is Catalan's problem). So the number of bracketings giving 1 is A000108(n-1) - a(n).
Also bracketings of f => f => ... => f where f is "false" and "=>" is implication.
Self-convolution yields A187430. - Paul D. Hanna, May 31 2015
Also, number of nonnegative walks of n steps with step sizes 1 and 2, starting at 0 and ending at 1. - Andrew Howroyd, Dec 23 2017
Series reversion is related to A001006. - F. Chapoton, Jul 14 2021

Examples

			Number of bracketings of 0^0^0^0^0^0 giving 0 is 11, so a(6) = 11.
From _Jon E. Schoenfield_, Dec 24 2017: (Start)
The 11 ways of parenthesizing 0^0^0^0^0^0 to obtain 0 are
0^(0^(0^((0^0)^0))) = 0^(0^(0^(1^0))) = 0^(0^(0^1)) = 0^(0^0) = 0^1 = 0;
0^((0^0)^(0^(0^0))) = 0^(1^(0^1)) = 0^(1^0) = 0^1 = 0;
0^((0^0)^((0^0)^0)) = 0^(1^(1^0)) = 0^(1^1) = 0^1 = 0;
0^(((0^0)^0)^(0^0)) = 0^((1^0)^1) = 0^(1^1) = 0^1 = 0;
0^((0^(0^(0^0)))^0) = 0^((0^(0^1))^0) = 0^((0^0)^0) = 0^(1^0) = 0^1 = 0;
0^((0^((0^0)^0))^0) = 0^((0^(1^0))^0) = 0^((0^1)^0) = 0^(0^0) = 0^1 = 0;
0^(((0^0)^(0^0))^0) = 0^((1^1)^0) = 0^(1^0) = 0^1 = 0;
0^(((0^(0^0))^0)^0) = 0^(((0^1)^0)^0) = 0^((0^0)^0) = 0^(1^0) = 0^1 = 0;
0^((((0^0)^0)^0)^0) = 0^(((1^0)^0)^0) = 0^((1^0)^0) = 0^(1^0) = 0^1 = 0;
(0^(0^0))^((0^0)^0) = (0^1)^(1^0) = 0^1 = 0;
(0^((0^0)^0))^(0^0) = (0^(1^0))^1. (End)
		

References

  • Thanks to Soren Galatius Smith, Jesper Torp Kristensen et al.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<3, n*(2-n),
          ((n-1)*(115*n^3-689*n^2+1332*n-840) *a(n-1)
           +(8*n-20)*(5*n^3+12*n^2-113*n+126) *a(n-2)
           -36*(n-3)*(5*n-8)*(2*n-5)*(2*n-7)  *a(n-3))
          /((2*(2*n-1))*(5*n-13)*n*(n-1)))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Mar 04 2019
  • Mathematica
    Rest[ CoefficientList[ Series[(-1 - Sqrt[1 - 4x] + Sqrt[2]Sqrt[1 + Sqrt[1 - 4x] + 6x])/4, {x, 0, 28}], x]] (* Robert G. Wilson v, Oct 28 2005 *)
    a[n_] := (-1)^(n+1)*Binomial[2n-1, n]*HypergeometricPFQ[{1-n, (n+1)/2, n/2}, {n, n+1}, 4]/(2n-1);
    Array[a, 27] (* Jean-François Alcover, Dec 26 2017, after Vladimir Kruchinin *)
  • Maxima
    a(n):= sum(binomial(2*j+n-1,j+n-1)*(-1)^(n-j-1)*binomial(2*n-1,j+n), j,0,n-1)/(2*n-1); /* Vladimir Kruchinin, May 10 2011 */
    
  • PARI
    a(n)={sum(j=0, n-1, binomial(2*j+n-1, j+n-1)*(-1)^(n-j-1)*binomial(2*n-1, j+n))/(2*n-1)} \\ Andrew Howroyd, Dec 23 2017
    
  • PARI
    first(n) = x='x+O('x^(n+1)); Vec(-((1 - 4*x)^(1/2) + 1)/4 + (2 + 2*(1 - 4*x)^(1/2) + 12*x)^(1/2)/4) \\ Iain Fox, Dec 23 2017

Formula

G.f.: - 1/4 - (1/4)*(1 - 4*x)^(1/2) + (1/4)*(2 + 2*(1 - 4*x)^(1/2) + 12*x)^(1/2).
The ratio a(n)/A000108(n-1) converges to (5-sqrt(5))/10 as n->oo.
a(n) = (Sum_{j=0..n-1} binomial(2*j+n-1, j+n-1)*(-1)^(n-j-1)*binomial(2*n-1, j+n))/(2*n-1). - Vladimir Kruchinin, May 10 2011
a(n) ~ (1-1/sqrt(5))*2^(2*n-3)/(sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Aug 09 2013
D-finite with recurrence: 2*n*(2*n-1)*(n-1)*a(n) -(n-1)*(19*n^2-60*n+48)*a(n-1) +(-31*n^3+173*n^2-346*n+264)*a(n-2) +4*(2*n-7)*(17*n^2-83*n+102)*a(n-3) +36*(2*n-7)*(2*n-9)*(n-4)*a(n-4)=0. - R. J. Mathar, Feb 20 2020
a(n) + A111160(n) = A000108(n). - F. Chapoton, Jul 14 2021

Extensions

a(0)=0 prepended by Alois P. Heinz, Mar 04 2019

A007228 a(n) = 3*binomial(4*n,n)/(n+1).

Original entry on oeis.org

3, 6, 28, 165, 1092, 7752, 57684, 444015, 3506100, 28242984, 231180144, 1917334783, 16077354108, 136074334200, 1160946392760, 9973891723635, 86210635955220, 749191930237608, 6541908910355280, 57369142749576660, 505045163173167760, 4461713825057817120
Offset: 0

Views

Author

Keywords

Comments

For n >= 1, a(n) is the number of distinct perforation patterns for deriving (v,b) = (n+1,n) punctured convolutional codes from (4,1). [Edited by Petros Hadjicostas, Jul 27 2020]
Apparently Bégin's (1992) paper was presented at a poster session at the conference and was never published.
a(n) is the total number of down steps between the first and second up steps in all 3-Dyck paths of length 4*(n+1). A 3-Dyck path is a nonnegative lattice path with steps (1,3), (1,-1) that starts and ends at y = 0. - Sarah Selkirk, May 07 2020
From Petros Hadjicostas, Jul 27 2020: (Start)
"A punctured convolutional code is a high-rate code obtained by the periodic elimination (i.e., puncturing) of specific code symbols from the output of a low-rate encoder. The resulting high-rate code depends on both the low-rate code, called the original code, and the number and specific positions of the punctured symbols." (The quote is from Haccoun and Bégin (1989).)
A high-rate code (v,b) (written as R = b/v) can be constructed from a low-rate code (v0,1) (written as R = 1/v0) by deleting from every v0*b code symbols a number of v0*b - v symbols (so that the resulting rate is R = b/v).
Even though my formulas below do not appear in the two published papers in the IEEE Transactions on Communications, from the theory in those two papers, it makes sense to replace "k|b" with "k|v0*b" (and "k|gcd(v,b)" with "k|gcd(v,v0*b)"). Pab Ter, however, uses "k|b" in the Maple programs in the related sequences A007223, A007224, A007225, A007227, and A007229. (End)
Conjecture: for n >= 1, a(n) is odd iff n = 4*A263133(k) + 3 for some k. - Peter Bala, Mar 13 2023

Examples

			From _Petros Hadjicostas_, Jul 29 2020: (Start)
We give some examples to illustrate the comment by _Sarah Selkirk_ about the total number of downs between the 1st and 2nd ups in a 2-Dyck path of length 4*(n+1). We denote by (+3) an up movement by a vector of (1,3) and by (-1) a down movement by a vector of (1,-1). We use powers to denote repetition of the same movement.
(i) For n = 0, we have the following 2-Dyck path of length 4 that contributes to a(0) = 3: (+3)(-1)^3 (no 2nd up here) with a total of 3 downs after the 1st up.
(ii) For n = 1, we have the following 2-Dyck paths of length 8 that contribute to a(1) = 6: (+3)(-1)(+3)(-1)^5, (+3)(-1)^2(+3)(-1)^4, and (+3)(-1)^3(+3)(-1)^3 with a contribution of 1 + 2 + 3 = 6 downs between the 1st and 2nd ups.
(iii) For n = 2, we have the following 2-Dyck paths of length 12 that contribute to a(2) = 28: (+3)(-1)(+3)(-1)^i(+3)(-1)^(8-i) for i = 0..5, (+3)(-1)^2(+3)(-1)^i(+3)^(7-i) for i = 0..4, and (+3)(-1)^3(+3)(-1)^i(+3)(-1)^(6-i) for i = 0..3 with a contribution of 1 x 6 + 2 x 5 + 3 x 4 = 28 downs between the 1st and 2nd ups. (End)
		

References

  • Guy Bégin, On the enumeration of perforation patterns for punctured convolutional codes, Séries Formelles et Combinatoire Algébrique, 4th colloquium, 15-19 Juin 1992, Montréal, Université du Québec à Montréal, pp. 1-10.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [3*Binomial(4*n,n)/(n+1) : n in [0..25]]; // Wesley Ivan Hurt, Jul 27 2020
  • Mathematica
    Table[3/(n+1) Binomial[4n,n],{n,0,30}] (* Harvey P. Dale, Nov 14 2013 *)
  • PARI
    a(n)={3*binomial(4*n,n)/(n+1)} \\ Andrew Howroyd, May 08 2020
    

Formula

a(n) = C(4*n,n)/(3*n+1) + 2*C(4*n+1,n)/(3*n+2) + 3*C(4*n+2,n)/(3*n+3). - Paul Barry, Nov 05 2006
G.f.: g + g^2 + g^3 where g = 1 + x*g^4 is the g.f. of A002293. - Mark van Hoeij, Nov 11 2011
3*(3*n-1)*(3*n-2)*(n+1)*a(n) - 8*(4*n-3)*(2*n-1)*(4*n-1)*a(n-1) = 0. - R. J. Mathar, Nov 24 2012
From Petros Hadjicostas, Jul 27 2020: (Start)
The number of perforation patterns to derive high-rate convolutional code (v,b) (written as R = b/v) from a given low-rate convolutional code (v0, 1) (written as R = 1/v0) is (1/b)*Sum_{k|gcd(v,b)} phi(k)*binomial(v0*b/k, v/k).
According to Pab Ter's Maple code in the related sequences (see above), this is the coefficient of z^v in the polynomial (1/b)*Sum_{k|b} phi(k)*(1 + z^k)^(v0*b/k).
Here (v,b) = (n+1,n) and (v0,1) = (4,1), so for n >= 1,
a(n) = (1/n)*Sum_{k|gcd(n+1,n)} phi(k)*binomial(4*n/k, (n+1)/k).
This simplifies to
a(n) = (1/n)*binomial(4*n, n+1) for n >= 1. (End)

Extensions

Edited by N. J. A. Sloane, Feb 07 2004 following a suggestion of Ralf Stephan
Reedited by N. J. A. Sloane, May 31 2008 following a suggestion of R. J. Mathar

A251574 E.g.f.: exp(4*x*G(x)^3) / G(x)^3 where G(x) = 1 + x*G(x)^4 is the g.f. of A002293.

Original entry on oeis.org

1, 1, 4, 40, 712, 18784, 663424, 29480896, 1581976960, 99585422848, 7198258087936, 587699970912256, 53497834761985024, 5372784803063664640, 590164397145095421952, 70386834555048578596864, 9058611906733586004803584, 1251310862246447324484468736, 184665445630564847038730076160
Offset: 0

Views

Author

Paul D. Hanna, Dec 06 2014

Keywords

Examples

			E.g.f.: A(x) = 1 + x + 4*x^2/2! + 40*x^3/3! + 712*x^4/4! + 18784*x^5/5! +...
such that A(x) = exp(4*x*G(x)^3) / G(x)^3
where G(x) = 1 + x*G(x)^4 is the g.f. of A002293:
G(x) = 1 + x + 4*x^2 + 22*x^3 + 140*x^4 + 969*x^5 + 7084*x^6 +...
Note that
A'(x) = exp(4*x*G(x)^3) = 1 + 4*x + 40*x^2/2! + 712*x^3/3! + 18784*x^4/4! +...
LOGARITHMIC DERIVATIVE.
The logarithm of the e.g.f. begins:
log(A(x)) = x + 3*x^2/2 + 15*x^3/3 + 91*x^4/4 + 612*x^5/5 +...
and so A'(x)/A(x) = G(x)^3.
TABLE OF POWERS OF E.G.F.
Form a table of coefficients of x^k/k! in A(x)^n as follows.
n=1: [1, 1,  4,   40,   712,  18784,   663424,   29480896, ...];
n=2: [1, 2, 10,  104,  1840,  47888,  1669696,   73399040, ...];
n=3: [1, 3, 18,  198,  3528,  91152,  3146256,  136990656, ...];
n=4: [1, 4, 28,  328,  5944, 153376,  5257024,  227057728, ...];
n=5: [1, 5, 40,  500,  9280, 240440,  8209600,  352337600, ...];
n=6: [1, 6, 54,  720, 13752, 359424, 12263184,  523933056, ...];
n=7: [1, 7, 70,  994, 19600, 518728, 17737216,  755807920, ...];
n=8: [1, 8, 88, 1328, 27088, 728192, 25020736, 1065353216, ...]; ...
in which the main diagonal begins (see A251584):
[1, 2, 18, 328, 9280, 359424, 17737216, 1065353216, ...]
and is given by the formula:
[x^n/n!] A(x)^(n+1) = 4^(n-2) * (n+1)^(n-3) * (3*n^2 + 13*n + 16) for n>=0.
		

Crossrefs

Programs

  • Mathematica
    Flatten[{1,1,Table[Sum[4^k * n!/k! * Binomial[4*n-k-4, n-k] * (k-1)/(n-1),{k,0,n}],{n,2,20}]}] (* Vaclav Kotesovec, Dec 07 2014 *)
  • PARI
    {a(n) = local(G=1);for(i=1,n,G=1+x*G^4 +x*O(x^n)); n!*polcoeff(exp(4*x*G^3)/G^3, n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n) = if(n==0||n==1, 1, sum(k=0, n, 4^k * n!/k! * binomial(4*n-k-4,n-k) * (k-1)/(n-1) ))}
    for(n=0, 20, print1(a(n), ", "))

Formula

Let G(x) = 1 + x*G(x)^4 be the g.f. of A002293, then the e.g.f. A(x) of this sequence satisfies:
(1) A'(x)/A(x) = G(x)^3.
(2) A'(x) = exp(4*x*G(x)^3).
(3) A(x) = exp( Integral G(x)^3 dx ).
(4) A(x) = exp( Sum_{n>=1} A006632(n)*x^n/n ), where A006632(n) = binomial(4*n-2,n)/(3*n-1).
(5) A(x) = F(x/A(x)) where F(x) is the e.g.f. of A251584.
(6) A(x) = Sum_{n>=0} A251584(n)*(x/A(x))^n/n! and
(7) [x^n/n!] A(x)^(n+1) = (n+1)*A251584(n),
where A251584(n) = 4^(n-2) * (n+1)^(n-4) * (3*n^2 + 13*n + 16).
a(n) = Sum_{k=0..n} 4^k * n!/k! * binomial(4*n-k-4, n-k) * (k-1)/(n-1) for n>1.
Recurrence: 3*(3*n-5)*(3*n-4)*(4*n^2 - 23*n + 34)*a(n) = 8*(128*n^5 - 1440*n^4 + 6520*n^3 - 14906*n^2 + 17289*n - 8190)*a(n-1) + 256*(4*n^2 - 15*n + 15)*a(n-2). - Vaclav Kotesovec, Dec 07 2014
a(n) ~ 2^(8*n-9) * n^(n-2) / (3^(3*n-7/2) * exp(n-1)). - Vaclav Kotesovec, Dec 07 2014

A130565 Member k=6 of a family of generalized Catalan numbers.

Original entry on oeis.org

1, 6, 57, 650, 8184, 109668, 1533939, 22137570, 327203085, 4928006512, 75357373305, 1166880131820, 18259838103852, 288308609783760, 4587430875645660, 73484989079268690, 1184104656043939071
Offset: 1

Views

Author

Wolfdieter Lang, Jul 13 2007

Keywords

Comments

The generalized Catalan numbers C(k,n):= binomial(k*n+1,n)/(k*n+1) become for negative k=-|k|, with |k|>=2, ((-1)^(n-1))*binomial((|k|+1)*n-2,n)/(|k|*n-1), n>=0.
For the members of the family C(k,n), k=2..9, see A130564.
The family c(k,n):=binomial((k+1)*n-2,n)/(k*n-1), n>=1, has the members A006013, A006632, A118971,for k=2,3,4 respectively (but the offset there is 0) and A130564 for k=5.

Crossrefs

Cf. k=5 member A130564. A006013, A006632, A118971,

Programs

  • Mathematica
    Table[Binomial[7n-2,n]/(6n-1),{n,20}] (* Harvey P. Dale, Feb 25 2013 *)

Formula

a(n) = binomial((k+1)*n-2,n)/(k*n-1), with k=6.
G.f.: inverse series of y*(1-y)^6.
a(n) = (6/7)*binomial(7*n,n)/(7*n-1). [Bruno Berselli, Jan 17 2014]
From Wolfdieter Lang, Feb 06 2020: (Start)
G.f.: (6/7)*(1 - hypergeom([-1, 1, 2, 3, 4, 5]/7, [1, 2, 3, 4, 5]/6, (7^7/6^6)*x)).
E.g.f.: (6/7)*(1 - hypergeom([-1, 1, 2, 3, 4, 5]/7, [1, 2, 3, 4, 5, 6]/6, (7^7/6^6)*x)). (End)
Showing 1-10 of 45 results. Next