cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A243953 E.g.f.: exp( Sum_{n>=1} A000108(n-1)*x^n/n ), where A000108(n) = binomial(2*n,n)/(n+1) forms the Catalan numbers.

Original entry on oeis.org

1, 1, 2, 8, 56, 592, 8512, 155584, 3456896, 90501632, 2728876544, 93143809024, 3550380249088, 149488545697792, 6890674623094784, 345131685337530368, 18664673706719019008, 1083931601731053223936, 67278418002152175960064, 4444711314548967826259968
Offset: 0

Views

Author

Paul D. Hanna, Jun 21 2014

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2/2! + 8*x^3/3! + 56*x^4/4! + 592*x^5/5! + 8512*x^6/6! +...
such that the logarithmic derivative of the e.g.f. equals the Catalan numbers:
log(A(x)) = x + x^2/2 + 2*x^3/3 + 5*x^4/4 + 14*x^5/5 + 42*x^6/6 + 132*x^7/7 + 429*x^8/8 +...+ A000108(n-1)*x^n/n +...
thus A'(x)/A(x) = C(x) where C(x) = 1 + x*C(x)^2.
Also, e.g.f. A(x) satisfies:
A(x) = 1 + x/A(x) + 4*(x/A(x))^2/2! + 32*(x/A(x))^3/3! + 400*(x/A(x))^4/4! + 6912*(x/A(x))^5/5! +...+ (n+1)^(n-2)*2^n*(x/A(x))^n/n! +...
If we form a table of coefficients of x^k/k! in A(x)^n, like so:
[1, 1,  2,    8,    56,    592,    8512,   155584,    3456896, ...];
[1, 2,  6,   28,   200,   2064,   28768,   511424,   11106432, ...];
[1, 3, 12,   66,   504,   5256,   72288,  1259712,   26822016, ...];
[1, 4, 20,  128,  1064,  11488,  158752,  2740480,   57517184, ...];
[1, 5, 30,  220,  2000,  22680,  319600,  5525600,  115094400, ...];
[1, 6, 42,  348,  3456,  41472,  602352, 10533024,  219321216, ...];
[1, 7, 56,  518,  5600,  71344, 1075648, 19176304,  401916032, ...];
[1, 8, 72,  736,  8624, 116736, 1835008, 33554432,  712166016, ...];
[1, 9, 90, 1008, 12744, 183168, 3009312, 56687040, 1224440064, ...]; ...
then the main diagonal equals (n+1)^(n-1) * 2^n for n>=0:
[1, 2, 12, 128, 2000, 41472, 1075648, 33554432, 1224440064, ...].
Note that Sum_{n>=0} (n+1)^(n-2) * 2^n * x^n/n! is an e.g.f. of A127670.
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[E^(1 - Sqrt[1-4*x]) * (1 + Sqrt[1-4*x])/2, {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Jun 22 2014 *)
  • Maxima
    a(n):=if n=0 then 1 else sum((n-1)!/(n-i-1)!*binomial(2*i,i)/(i+1)*a(n-i-1),i,0,n-1); /* Vladimir Kruchinin, Feb 22 2015 */
  • PARI
    /* Explicit formula: */
    {a(n)=n!*polcoeff( exp(1-sqrt(1-4*x +x*O(x^n))) * (1 + sqrt(1-4*x +x*O(x^n)))/2,n)}
    for(n=0,25,print1(a(n),", "))
    
  • PARI
    /* Logarithmic derivative of e.g.f. equals Catalan numbers: */
    {A000108(n) = binomial(2*n,n)/(n+1)}
    {a(n)=n!*polcoeff( exp(sum(m=1,n, A000108(m-1)*x^m/m)+x*O(x^n)),n)}
    for(n=0,25,print1(a(n),", "))
    
  • PARI
    /* From [x^n/n!] A(x)^(n+1) = (n+1)^(n-1)*2^n */
    {a(n)=n!*polcoeff(x/serreverse(x*sum(m=0, n+1, (m+1)^(m-2)*(2*x)^m/m!)+x^2*O(x^n)), n)}
    for(n=0,25,print1(a(n),", "))
    

Formula

E.g.f. A(x) satisfies:
(1) A(x) = exp(1 - sqrt(1-4*x)) * (1 + sqrt(1-4*x))/2.
(2) A(x)^2 - A(x)*A'(x) + x*A'(x)^2 = 0 (differential equation).
(3) [x^n/n!] A(x)^(n+1) = (n+1)^(n-1)*2^n for n>=0.
(4) A(x) = G(x/A(x)) such that A(x*G(x)) = G(x) = Sum_{n>=0} (n+1)^(n-2)*2^n*x^n/n!.
(5) A(x) = x / Series_Reversion(x*G(x)) where G(x) = Sum_{n>=0} (n+1)^(n-2)*2^n*x^n/n!.
(6) x = -LambertW(-2*x/A(x)) * (2 + LambertW(-2*x/A(x)))/4. [From a formula by Vaclav Kotesovec in A127670]
a(n) ~ 2^(2*n-5/2) * n^(n-2) / exp(n-1). - Vaclav Kotesovec, Jun 22 2014
a(n) = sum(i=0..n-1, (n-1)!/(n-i-1)!*binomial(2*i,i)/(i+1)*a(n-i-1)), a(0)=1. - Vladimir Kruchinin, Feb 22 2015
From Peter Bala, Apr 14 2017: (Start)
a(n+2) = 2^(n+1)*A001515(n).
a(n+1) = Sum_{k = 0..n} binomial(n+k-1,2*k)*2^(n-k)*(2*k)!/k!.
D-finite with recurrence a(n) = (4*n - 10)*a(n-1) + 4*a(n-2) with a(0) = a(1) = 1.
The derivative A'(x) of the e.g.f. is equal to exp(2*x*c(x)), that is, A'(x) is the Catalan transform of exp(2*x) as defined in Barry, Section 3. (End)
E.g.f. A(x) satisfies (x/A(x))' = 1/A'(x). - Alexander Burstein, Oct 31 2023

A251573 E.g.f.: exp(3*x*G(x)^2) / G(x)^2 where G(x) = 1 + x*G(x)^3 is the g.f. of A001764.

Original entry on oeis.org

1, 1, 3, 21, 261, 4833, 120303, 3778029, 143531433, 6404711553, 328447585179, 19037277446949, 1230842669484717, 87829738967634849, 6856701559496841159, 581343578623728854397, 53196439113856500195537, 5225543459274294130169601, 548468830470032135590262067, 61258398893626609968686844597
Offset: 0

Views

Author

Paul D. Hanna, Dec 06 2014

Keywords

Examples

			E.g.f.: A(x) = 1 + x + 3*x^2/2! + 21*x^3/3! + 261*x^4/4! + 4833*x^5/5! +...
such that A(x) = exp(3*x*G(x)^2) / G(x)^2
where G(x) = 1 + x*G(x)^3 is the g.f. of A001764:
G(x) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 + 1428*x^6 +...
The e.g.f. satisfies:
A(x) = 1 + x/A(x) + 5*x^2/(2!*A(x)^2) + 54*x^3/(3!*A(x)^3) + 945*x^4/(4!*A(x)^4) + 23328*x^5/(5!*A(x)^5) + 750141*x^6/(6!*A(x)^6) + 29859840*x^7/(7!*A(x)^7) +...+ 3^(n-1)*(n+1)^(n-3)*(n+3) * x^n/(n!*A(x)^n) +...
Note that
A'(x) = exp(3*x*G(x)^2) = 1 + 3*x + 21*x^2/2! + 261*x^3/3! + 4833*x^4/4! +...
LOGARITHMIC DERIVATIVE.
The logarithm of the e.g.f. begins:
log(A(x)) = x + 2*x^2/2 + 7*x^3/3 + 30*x^4/4 + 143*x^5/5 +...
and so A'(x)/A(x) = G(x)^2.
TABLE OF POWERS OF E.G.F.
Form a table of coefficients of x^k/k! in A(x)^n as follows.
n=1: [1, 1,  3,   21,   261,   4833,  120303,   3778029, ...];
n=2: [1, 2,  8,   60,   744,  13536,  330912,  10232928, ...];
n=3: [1, 3, 15,  123,  1557,  28179,  680427,  20771235, ...];
n=4: [1, 4, 24,  216,  2832,  51552, 1237248,  37404288, ...];
n=5: [1, 5, 35,  345,  4725,  87285, 2094975,  62949825, ...];
n=6: [1, 6, 48,  516,  7416, 139968, 3378528, 101278944, ...];
n=7: [1, 7, 63,  735, 11109, 215271, 5250987, 157613463, ...];
n=8: [1, 8, 80, 1008, 16032, 320064, 7921152, 238878720, ...]; ...
in which the main diagonal begins (see A251583):
[1, 2, 15, 216, 4725, 139968, 5250987, 238878720, ...]
and is given by the formula:
[x^n/n!] A(x)^(n+1) = 3^(n-1) * (n+1)^(n-2) * (n+3) for n>=0.
		

Crossrefs

Programs

  • Mathematica
    Flatten[{1,1,Table[Sum[3^k * n!/k! * Binomial[3*n-k-3, n-k] * (k-1)/(n-1),{k,0,n}],{n,2,20}]}] (* Vaclav Kotesovec, Dec 07 2014 *)
    Flatten[{1,1,RecurrenceTable[{27*(n-2)*a[n-2]-3*(3*n-8)*(15-13*n+3*n^2)*a[n-1]+2*(n-3)*(2*n-3)*a[n]==0,a[2]==3,a[3]==21},a,{n,20}]}] (* Vaclav Kotesovec, Dec 07 2014 *)
  • PARI
    {a(n) = local(G=1);for(i=1,n,G=1+x*G^3 +x*O(x^n)); n!*polcoeff(exp(3*x*G^2)/G^2, n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n) = if(n==0||n==1, 1, sum(k=0, n, 3^k * n!/k! * binomial(3*n-k-3,n-k) * (k-1)/(n-1) ))}
    for(n=0, 20, print1(a(n), ", "))

Formula

Let G(x) = 1 + x*G(x)^3 be the g.f. of A001764, then the e.g.f. A(x) of this sequence satisfies:
(1) A'(x)/A(x) = G(x)^2.
(2) A'(x) = exp(3*x*G(x)^2).
(3) A(x) = exp( Integral G(x)^2 dx ).
(4) A(x) = exp( Sum_{n>=1} A006013(n-1)*x^n/n ), where A006013(n-1) = binomial(3*n-2,n)/(2*n-1).
(5) A(x) = F(x/A(x)) where F(x) is the e.g.f. of A251583.
(6) A(x) = Sum_{n>=0} A251583(n)*(x/A(x))^n/n! where A251583(n) = 3^(n-1) * (n+1)^(n-3) * (n+3).
(7) [x^n/n!] A(x)^(n+1) = 3^(n-1) * (n+1)^(n-2) * (n+3).
a(n) = Sum_{k=0..n} 3^k * n!/k! * binomial(3*n-k-3, n-k) * (k-1)/(n-1) for n>1.
Recurrence (for n>3): 2*(n-3)*(2*n-3)*a(n) = 3*(3*n-8)*(3*n^2 - 13*n + 15)*a(n-1) - 27*(n-2)*a(n-2). - Vaclav Kotesovec, Dec 07 2014
a(n) ~ 3^(3*n-7/2) * n^(n-2) / (2^(2*n-5/2) * exp(n-1)). - Vaclav Kotesovec, Dec 07 2014

A251575 E.g.f.: exp(5*x*G(x)^4) / G(x)^4 where G(x) = 1 + x*G(x)^5 is the g.f. of A002294.

Original entry on oeis.org

1, 1, 5, 65, 1505, 51505, 2354725, 135258625, 9373203425, 761486105825, 71001537157925, 7475144493546625, 877222642396170625, 113551974107296500625, 16073867927431440597125, 2470217878902686107522625, 409596824402404827033730625, 72890993386914239524503090625, 13857243751694786173837746653125
Offset: 0

Views

Author

Paul D. Hanna, Dec 06 2014

Keywords

Examples

			E.g.f.: A(x) = 1 + x + 5*x^2/2! + 65*x^3/3! + 1505*x^4/4! + 51505*x^5/5! +...
such that A(x) = exp(5*x*G(x)^4) / G(x)^4
where G(x) = 1 + x*G(x)^5 is the g.f. of A002294:
G(x) = 1 + x + 5*x^2 + 35*x^3 + 285*x^4 + 2530*x^5 + 23751*x^6 +...
Note that
A'(x) = exp(5*x*G(x)^4) = 1 + 5*x + 65*x^2/2! + 1505*x^3/3! + 51505*x^4/4! +...
LOGARITHMIC DERIVATIVE.
The logarithm of the e.g.f. begins:
log(A(x)) = x + 4*x^2/2 + 26*x^3/3 + 204*x^4/4 + 1771*x^5/5 +...
and so A'(x)/A(x) = G(x)^4.
TABLE OF POWERS OF E.G.F.
Form a table of coefficients of x^k/k! in A(x)^n as follows.
n=1: [1, 1,  5,   65,  1505,   51505,  2354725,  135258625, ...];
n=2: [1, 2, 12,  160,  3680,  124560,  5637760,  321147200, ...];
n=3: [1, 3, 21,  291,  6705,  225315, 10112805,  571694355, ...];
n=4: [1, 4, 32,  464, 10784,  361120, 16101760,  904145920, ...];
n=5: [1, 5, 45,  685, 16145,  540645, 23993725, 1339552925, ...];
n=6: [1, 6, 60,  960, 23040,  774000, 34254720, 1903435200, ...];
n=7: [1, 7, 77, 1295, 31745, 1072855, 47438125, 2626525615, ...];
n=8: [1, 8, 96, 1696, 42560, 1450560, 64195840, 3545600000, ...]; ...
in which the main diagonal begins (see A251585):
[1, 2, 21, 464, 16145, 774000, 47438125, 3545600000, ...]
and is given by the formula:
[x^n/n!] A(x)^(n+1) = 5^(n-3) * (n+1)^(n-4) * (16*n^3 + 87*n^2 + 172*n + 125) for n>=0.
		

Crossrefs

Programs

  • Mathematica
    Flatten[{1,1,Table[Sum[5^k * n!/k! * Binomial[5*n-k-5, n-k] * (k-1)/(n-1),{k,0,n}],{n,2,20}]}] (* Vaclav Kotesovec, Dec 07 2014 *)
  • PARI
    {a(n) = local(G=1);for(i=1,n,G=1+x*G^5 +x*O(x^n)); n!*polcoeff(exp(5*x*G^4)/G^4, n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n) = if(n==0||n==1, 1, sum(k=0, n, 5^k * n!/k! * binomial(5*n-k-5,n-k) * (k-1)/(n-1) ))}
    for(n=0, 20, print1(a(n), ", "))

Formula

Let G(x) = 1 + x*G(x)^5 be the g.f. of A002294, then the e.g.f. A(x) of this sequence satisfies:
(1) A'(x)/A(x) = G(x)^4.
(2) A'(x) = exp(5*x*G(x)^4).
(3) A(x) = exp( Integral G(x)^4 dx ).
(4) A(x) = exp( Sum_{n>=1} A118971(n-1)*x^n/n ), where A118971(n-1) = binomial(5*n-2,n)/(4*n-1).
(5) A(x) = F(x/A(x)) where F(x) is the e.g.f. of A251585.
(6) A(x) = Sum_{n>=0} A251585(n)*(x/A(x))^n/n! and
(7) [x^n/n!] A(x)^(n+1) = (n+1)*A251585(n)
where A251585(n) = 5^(n-3) * (n+1)^(n-5) * (16*n^3 + 87*n^2 + 172*n + 125).
a(n) = Sum_{k=0..n} 5^k * n!/k! * binomial(5*n-k-5, n-k) * (k-1)/(n-1) for n>1.
Recurrence: 8*(2*n-3)*(4*n-7)*(4*n-5)*(25*n^3 - 210*n^2 + 598*n - 581)*a(n) = 5*(15625*n^7 - 240625*n^6 + 1592500*n^5 - 5883125*n^4 + 13135350*n^3 - 17781015*n^2 + 13566657*n - 4523904)*a(n-1) - 3125*(25*n^3 - 135*n^2 + 253*n - 168)*a(n-2). - Vaclav Kotesovec, Dec 07 2014
a(n) ~ 5^(5*n-11/2) * n^(n-2) / (2^(8*n-9) * exp(n-1)). - Vaclav Kotesovec, Dec 07 2014

A251576 E.g.f.: exp(6*x*G(x)^5) / G(x)^5 where G(x) = 1 + x*G(x)^6 is the g.f. of A002295.

Original entry on oeis.org

1, 1, 6, 96, 2736, 115056, 6455376, 454666176, 38610711936, 3842344221696, 438721154343936, 56549927146392576, 8123473514799876096, 1287034084022760677376, 222964032114987212998656, 41930788886197036399190016, 8507629742037888427727486976, 1852490637585980898960109142016
Offset: 0

Views

Author

Paul D. Hanna, Dec 06 2014

Keywords

Examples

			E.g.f.: A(x) = 1 + x + 6*x^2/2! + 96*x^3/3! + 2736*x^4/4! + 115056*x^5/5! +...
such that A(x) = exp(6*x*G(x)^5) / G(x)^5
where G(x) = 1 + x*G(x)^6 is the g.f. of A002295:
G(x) = 1 + x + 6*x^2 + 51*x^3 + 506*x^4 + 5481*x^5 + 62832*x^6 +...
Note that
A'(x) = exp(6*x*G(x)^5) = 1 + 6*x + 96*x^2/2! + 2736*x^3/3! +...
LOGARITHMIC DERIVATIVE.
The logarithm of the e.g.f. begins:
log(A(x)) = x + 5*x^2/2 + 40*x^3/3 + 385*x^4/4 + 4095*x^5/5 + 46376*x^6/6 +...
and so A'(x)/A(x) = G(x)^5.
TABLE OF POWERS OF E.G.F.
Form a table of coefficients of x^k/k! in A(x)^n as follows.
n=1: [1, 1,   6,   96,  2736,  115056,   6455376,  454666176, ...];
n=2: [1, 2,  14,  228,  6456,  268992,  14968224, 1047087648, ...];
n=3: [1, 3,  24,  402, 11376,  470808,  26011584, 1808151552, ...];
n=4: [1, 4,  36,  624, 17736,  730944,  40143456, 2774490624, ...];
n=5: [1, 5,  50,  900, 25800, 1061400,  58017600, 3989340000, ...];
n=6: [1, 6,  66, 1236, 35856, 1475856,  80395056, 5503484736, ...];
n=7: [1, 7,  84, 1638, 48216, 1989792, 108156384, 7376303088, ...];
n=8: [1, 8, 104, 2112, 63216, 2620608, 142314624, 9676910592, ...]; ...
in which the main diagonal begins (see A251586):
[1, 2, 24, 624, 25800, 1475856, 108156384, 9676910592, ...]
and is given by the formula:
[x^n/n!] A(x)^(n+1) = 6^(n-4) * (n+1)^(n-5) * (125*n^4 + 810*n^3 + 2095*n^2 + 2586*n + 1296) for n>=0.
		

Crossrefs

Programs

  • Mathematica
    Flatten[{1,1,Table[Sum[6^k * n!/k! * Binomial[6*n-k-6, n-k] * (k-1)/(n-1),{k,0,n}],{n,2,20}]}] (* Vaclav Kotesovec, Dec 07 2014 *)
  • PARI
    {a(n) = local(G=1);for(i=1,n,G=1+x*G^6 +x*O(x^n)); n!*polcoeff(exp(6*x*G^5)/G^5, n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n) = if(n==0||n==1, 1, sum(k=0, n, 6^k * n!/k! * binomial(6*n-k-6,n-k) * (k-1)/(n-1) ))}
    for(n=0, 20, print1(a(n), ", "))

Formula

Let G(x) = 1 + x*G(x)^6 be the g.f. of A002295, then the e.g.f. A(x) of this sequence satisfies:
(1) A'(x)/A(x) = G(x)^5.
(2) A'(x) = exp(6*x*G(x)^5).
(3) A(x) = exp( Integral G(x)^5 dx ).
(4) A(x) = exp( Sum_{n>=1} A130564(n)*x^n/n ), where A130564(n) = binomial(6*n-2,n)/(5*n-1).
(5) A(x) = F(x/A(x)) where F(x) is the e.g.f. of A251586.
(6) A(x) = Sum_{n>=0} A251586(n)*(x/A(x))^n/n! and
(7) [x^n/n!] A(x)^(n+1) = (n+1)*A251586(n),
where A251586(n) = 6^(n-4) * (n+1)^(n-6) * (125*n^4 + 810*n^3 + 2095*n^2 + 2586*n + 1296).
a(n) = Sum_{k=0..n} 6^k * n!/k! * binomial(6*n-k-6, n-k) * (k-1)/(n-1) for n>1.
Recurrence: 5*(5*n-9)*(5*n-8)*(5*n-7)*(5*n-6)*(9*n^4 - 99*n^3 + 413*n^2 - 777*n + 559)*a(n) = 72*(5832*n^9 - 113724*n^8 + 986580*n^7 - 5003586*n^6 + 16373448*n^5 - 35916483*n^4 + 52931854*n^3 - 50678109*n^2 + 28701206*n - 7357350)*a(n-1) + 46656*(9*n^4 - 63*n^3 + 170*n^2 - 212*n + 105)*a(n-2). - Vaclav Kotesovec, Dec 07 2014
a(n) ~ 6^(6*(n-1)-1/2) / 5^(5*(n-1)-1/2) * n^(n-2) / exp(n-1). - Vaclav Kotesovec, Dec 07 2014

A251577 E.g.f.: exp(7*x*G(x)^6) / G(x)^6 where G(x) = 1 + x*G(x)^7 is the g.f. of A002296.

Original entry on oeis.org

1, 1, 7, 133, 4501, 224497, 14926387, 1245099709, 125177105641, 14743403405857, 1991987858095039, 303781606238806549, 51624122993243471293, 9674836841745014156497, 1982441139367342976694379, 440946185623028320815311053, 105810290178441439797537070033, 27247415403508413760437930799681
Offset: 0

Views

Author

Paul D. Hanna, Dec 06 2014

Keywords

Examples

			E.g.f.: A(x) = 1 + x + 7*x^2/2! + 133*x^3/3! + 4501*x^4/4! + 224497*x^5/5! +...
such that A(x) = exp(7*x*G(x)^6) / G(x)^6
where G(x) = 1 + x*G(x)^7 is the g.f. of A002296:
G(x) = 1 + x + 7*x^2 + 70*x^3 + 819*x^4 + 10472*x^5 + 141778*x^6 +...
Note that
A'(x) = exp(7*x*G(x)^6) = 1 + 7*x + 133*x^2/2! + 4501*x^3/3! +...
LOGARITHMIC DERIVATIVE.
The logarithm of the e.g.f. begins:
log(A(x)) = x + 6*x^2/2 + 57*x^3/3 + 650*x^4/4 + 8184*x^5/5 + 109668*x^6/6 +...
and so A'(x)/A(x) = G(x)^6.
TABLE OF POWERS OF E.G.F.
Form a table of coefficients of x^k/k! in A(x)^n as follows.
n=1: [1, 1,  7,   133,  4501,  224497,  14926387,  1245099709, ...];
n=2: [1, 2,  16,  308, 10360,  512624,  33845728,  2807075264, ...];
n=3: [1, 3,  27,  531, 17829,  876771,  57529143,  4745597787, ...];
n=4: [1, 4,  40,  808, 27184, 1331008,  86864512,  7129675840, ...];
n=5: [1, 5,  55, 1145, 38725, 1891205, 122869075, 10038831425, ...];
n=6: [1, 6,  72, 1548, 52776, 2575152, 166702752, 13564381824, ...];
n=7: [1, 7,  91, 2023, 69685, 3402679, 219682183, 17810832319, ...];
n=8: [1, 8, 112, 2576, 89824, 4395776, 283295488, 22897384832, ...]; ...
in which the main diagonal begins (see A251587):
[1, 2, 27, 808, 38725, 2575152, 219682183, 22897384832, ...]
and is given by the formula:
[x^n/n!] A(x)^(n+1) = 7^(n-5) * (n+1)^(n-6) * (1296*n^5 + 9720*n^4 + 30555*n^3 + 50665*n^2 + 44621*n + 16807) for n>=0.
		

Crossrefs

Programs

  • Mathematica
    Flatten[{1,1,Table[Sum[7^k * n!/k! * Binomial[7*n-k-7, n-k] * (k-1)/(n-1),{k,0,n}],{n,2,20}]}] (* Vaclav Kotesovec, Dec 07 2014 *)
  • PARI
    {a(n) = local(G=1);for(i=1,n,G=1+x*G^7 +x*O(x^n)); n!*polcoeff(exp(7*x*G^6)/G^6, n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n) = if(n==0|n==1, 1, sum(k=0, n, 7^k * n!/k! * binomial(7*n-k-7,n-k) * (k-1)/(n-1) ))}
    for(n=0, 20, print1(a(n), ", "))

Formula

Let G(x) = 1 + x*G(x)^7 be the g.f. of A002296, then the e.g.f. A(x) of this sequence satisfies:
(1) A'(x)/A(x) = G(x)^6.
(2) A'(x) = exp(7*x*G(x)^6).
(3) A(x) = exp( Integral G(x)^6 dx ).
(4) A(x) = exp( Sum_{n>=1} A130565(n)*x^n/n ), where A130565(n) = binomial(7*n-2,n)/(6*n-1).
(5) A(x) = F(x/A(x)) where F(x) is the e.g.f. of A251587.
(6) A(x) = Sum_{n>=0} A251587(n)*(x/A(x))^n/n! and
(7) [x^n/n!] A(x)^(n+1) = (n+1)*A251587(n),
where A251587(n) = 7^(n-5) * (n+1)^(n-7) * (1296*n^5 + 9720*n^4 + 30555*n^3 + 50665*n^2 + 44621*n + 16807).
a(n) = Sum_{k=0..n} 7^k * n!/k! * binomial(7*n-k-7, n-k) * (k-1)/(n-1) for n>1.
Recurrence: 72*(2*n-3)*(3*n-5)*(3*n-4)*(6*n-11)*(6*n-7)*(2401*n^5 - 32585*n^4 + 178311*n^3 - 492779*n^2 + 689623*n - 392491)*a(n) = 7*(282475249*n^11 - 6658345155*n^10 + 71339412375*n^9 - 458968749330*n^8 + 1971937124661*n^7 - 5947597074909*n^6 + 12867618998885*n^5 - 20002508046570*n^4 + 21938241804255*n^3 - 16207858252075*n^2 + 7281095411817*n - 1512276480000)*a(n-1) - 823543*(2401*n^5 - 20580*n^4 + 71981*n^3 - 129346*n^2 + 120663*n - 47520)*a(n-2). - Vaclav Kotesovec, Dec 07 2014
a(n) ~ 7^(7*(n-1)-1/2) / 6^(6*(n-1)-1/2) * n^(n-2) / exp(n-1). - Vaclav Kotesovec, Dec 07 2014

A251578 E.g.f.: exp(8*x*G(x)^7) / G(x)^7 where G(x) = 1 + x*G(x)^8 is the g.f. of A007556.

Original entry on oeis.org

1, 1, 8, 176, 6896, 397888, 30584128, 2948178304, 342418882688, 46582810477568, 7268517454045184, 1279982790328858624, 251155319283837571072, 54344039464582833577984, 12855960226911391575670784, 3301167001281829056285458432, 914476489427649778704952819712
Offset: 0

Views

Author

Paul D. Hanna, Dec 06 2014

Keywords

Examples

			E.g.f.: A(x) = 1 + x + 8*x^2/2! + 176*x^3/3! + 6896*x^4/4! + 397888*x^5/5! +...
such that A(x) = exp(8*x*G(x)^7) / G(x)^7
where G(x) = 1 + x*G(x)^8 is the g.f. of A007556:
G(x) = 1 + x + 8*x^2 + 92*x^3 + 1240*x^4 + 18278*x^5 + 285384*x^6 +...
Note that
A'(x) = exp(8*x*G(x)^7) = 1 + 8*x + 176*x^2/2! + 6896*x^3/3! +...
LOGARITHMIC DERIVATIVE.
The logarithm of the e.g.f. begins:
log(A(x)) = x + 7*x^2/2 + 77*x^3/3 + 1015*x^4/4 + 14763*x^5/5 +...
and so A'(x)/A(x) = G(x)^7.
TABLE OF POWERS OF E.G.F.
Form a table of coefficients of x^k/k! in A(x)^n as follows.
n=1: [1, 1,   8,  176,   6896,  397888,  30584128,  2948178304, ...];
n=2: [1, 2,  18,  400,  15584,  892896,  68217472,  6543183488, ...];
n=3: [1, 3,  30,  678,  26352, 1501344, 114073632, 10890011520, ...];
n=4: [1, 4,  44, 1016,  39512, 2241472, 169479808, 16107837568, ...];
n=5: [1, 5,  60, 1420,  55400, 3133560, 235931200, 22331561600, ...];
n=6: [1, 6,  78, 1896,  74376, 4200048, 315106128, 29713474944, ...];
n=7: [1, 7,  98, 2450,  96824, 5465656, 408881872, 38425052848, ...];
n=8: [1, 8, 120, 3088, 123152, 6957504, 519351232, 48658878080, ...]; ...
in which the main diagonal begins (see A251587):
[1, 2, 30, 1016, 55400, 4200048, 408881872, 48658878080, ...]
and is given by the formula:
[x^n/n!] A(x)^(n+1) = 8^(n-6) * (n+1)^(n-7) * (16807*n^6 + 143031*n^5 + 525875*n^4 + 1074745*n^3 + 1294846*n^2 + 876856*n + 262144) for n>=0.
		

Crossrefs

Programs

  • Mathematica
    Flatten[{1,1,Table[Sum[8^k * n!/k! * Binomial[8*n-k-8, n-k] * (k-1)/(n-1),{k,0,n}],{n,2,20}]}] (* Vaclav Kotesovec, Dec 07 2014 *)
  • PARI
    {a(n) = local(G=1);for(i=1,n,G=1+x*G^8 +x*O(x^n)); n!*polcoeff(exp(8*x*G^7)/G^7, n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n) = if(n==0|n==1, 1, sum(k=0, n, 8^k * n!/k! * binomial(8*n-k-8,n-k) * (k-1)/(n-1) ))}
    for(n=0, 20, print1(a(n), ", "))

Formula

Let G(x) = 1 + x*G(x)^8 be the g.f. of A007556, then the e.g.f. A(x) of this sequence satisfies:
(1) A'(x)/A(x) = G(x)^7.
(2) A'(x) = exp(8*x*G(x)^7).
(3) A(x) = exp( Integral G(x)^7 dx ).
(4) A(x) = exp( Sum_{n>=1} A234466(n-1)*x^n/n ), where A234466(n-1)(n) = binomial(8*n-2,n)/(7*n-1).
(5) A(x) = F(x/A(x)) where F(x) is the e.g.f. of A251588.
(6) A(x) = Sum_{n>=0} A251588(n)*(x/A(x))^n/n! and
(7) [x^n/n!] A(x)^(n+1) = (n+1)*A251588(n),
where A251588(n) = 8^(n-6) * (n+1)^(n-8) * (16807*n^6 + 143031*n^5 + 525875*n^4 + 1074745*n^3 + 1294846*n^2 + 876856*n + 262144).
a(n) = Sum_{k=0..n} 8^k * n!/k! * binomial(8*n-k-8, n-k) * (k-1)/(n-1) for n>1.
Recurrence: 7*(7*n-13)*(7*n-12)*(7*n-11)*(7*n-10)*(7*n-9)*(7*n-8)*(4096*n^6 - 66048*n^5 + 446400*n^4 - 1620808*n^3 + 3339890*n^2 - 3711613*n + 1743218)*a(n) = 128*(536870912*n^13 - 14831058944*n^12 + 188986949632*n^11 - 1471608258560*n^10 + 7817645654016*n^9 - 29941451735040*n^8 + 85134250240000*n^7 - 182149348773632*n^6 + 293626158621632*n^5 - 352753169299376*n^4 + 307548490429492*n^3 - 184675145918224*n^2 + 68635535585133*n - 11961900200250)*a(n-1) + 16777216*(4096*n^6 - 41472*n^5 + 177600*n^4 - 413768*n^3 + 556826*n^2 - 414321*n + 135135)*a(n-2). - Vaclav Kotesovec, Dec 07 2014
a(n) ~ 8^(8*(n-1)-1/2) / 7^(7*(n-1)-1/2) * n^(n-2) / exp(n-1). - Vaclav Kotesovec, Dec 07 2014

A251579 E.g.f.: exp(9*x*G(x)^8) / G(x)^8 where G(x) = 1 + x*G(x)^9 is the g.f. of A062994.

Original entry on oeis.org

1, 1, 9, 225, 10017, 656289, 57255849, 6262226721, 825067217025, 127305462542913, 22527254639457801, 4498536675388410081, 1000890043482114644769, 245556248365681036646625, 65862976584851401437170217, 19174678419336874098038167329, 6022064808176665662053835550209
Offset: 0

Views

Author

Paul D. Hanna, Dec 06 2014

Keywords

Examples

			E.g.f.: A(x) = 1 + x + 9*x^2/2! + 225*x^3/3! + 10017*x^4/4! + 656289*x^5/5! +...
such that A(x) = exp(9*x*G(x)^8) / G(x)^8
where G(x) = 1 + x*G(x)^9 is the g.f. of A062994:
G(x) = 1 + x + 9*x^2 + 117*x^3 + 1785*x^4 + 29799*x^5 + 527085*x^6 +...
Note that
A'(x) = exp(9*x*G(x)^8) = 1 + 9*x + 225*x^2/2! + 10017*x^3/3! +...
LOGARITHMIC DERIVATIVE.
The logarithm of the e.g.f. begins:
log(A(x)) = x + 8*x^2/2 + 200*x^3/3 + 8976*x^4/4 + 592368*x^5/5 +...
and so A'(x)/A(x) = G(x)^8.
TABLE OF POWERS OF E.G.F.
Form a table of coefficients of x^k/k! in A(x)^n as follows.
n=1: [1, 1,   9,  225,  10017,   656289,  57255849,  6262226721, ...];
n=2: [1, 2,  20,  504,  22320,  1453248, 126104256, 13731880320, ...];
n=3: [1, 3,  33,  843,  37233,  2411667, 208241361, 22581193851, ...];
n=4: [1, 4,  48, 1248,  55104,  3554496, 305558784, 33002857728, ...];
n=5: [1, 5,  65, 1725,  76305,  4906965, 420159825, 45211985325, ...];
n=6: [1, 6,  84, 2280, 101232,  6496704, 554376384, 59448214656, ...];
n=7: [1, 7, 105, 2919, 130305,  8353863, 710786601, 75977951175, ...];
n=8: [1, 8, 128, 3648, 163968, 10511232, 892233216, 95096756736, ...]; ...
in which the main diagonal begins (see A251587):
[1, 2, 33, 1248, 76305, 6496704, 710786601, 95096756736, ...]
and is given by the formula:
[x^n/n!] A(x)^(n+1) = 9^(n-7) * (n+1)^(n-8) * (262144*n^7 + 2494464*n^6 + 10470208*n^5 + 25229505*n^4 + 37857568*n^3 + 35537670*n^2 + 19414368*n + 4782969) for n>=0.
		

Crossrefs

Programs

  • Mathematica
    Flatten[{1,1,Table[Sum[9^k * n!/k! * Binomial[9*n-k-9, n-k] * (k-1)/(n-1),{k,0,n}],{n,2,20}]}] (* Vaclav Kotesovec, Dec 07 2014 *)
  • PARI
    {a(n) = local(G=1);for(i=1,n,G=1+x*G^9 +x*O(x^n)); n!*polcoeff(exp(9*x*G^8)/G^8, n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n) = if(n==0|n==1, 1, sum(k=0, n, 9^k * n!/k! * binomial(9*n-k-9,n-k) * (k-1)/(n-1) ))}
    for(n=0, 20, print1(a(n), ", "))

Formula

Let G(x) = 1 + x*G(x)^9 be the g.f. of A062994, then the e.g.f. A(x) of this sequence satisfies:
(1) A'(x)/A(x) = G(x)^8.
(2) A'(x) = exp(8*x*G(x)^8).
(3) A(x) = exp( Integral G(x)^8 dx ).
(4) A(x) = exp( Sum_{n>=1} A234513(n-1)*x^n/n ), where A234513(n-1) = binomial(9*n-2,n)/(8*n-1).
(5) A(x) = F(x/A(x)) where F(x) is the e.g.f. of A251589.
(6) A(x) = Sum_{n>=0} A251589(n)*(x/A(x))^n/n! and
(7) [x^n/n!] A(x)^(n+1) = (n+1)*A251589(n),
where A251589(n) = 9^(n-7) * (n+1)^(n-9) * (262144*n^7 + 2494464*n^6 + 10470208*n^5 + 25229505*n^4 + 37857568*n^3 + 35537670*n^2 + 19414368*n + 4782969).
a(n) = Sum_{k=0..n} 9^k * n!/k! * binomial(9*n-k-9, n-k) * (k-1)/(n-1) for n>1.
Recurrence: 128*(2*n-3)*(4*n-7)*(4*n-5)*(8*n-15)*(8*n-13)*(8*n-11)*(8*n-9)*(59049*n^7 - 1102248*n^6 + 8858079*n^5 - 39764115*n^4 + 107806473*n^3 - 176772075*n^2 + 162618742*n - 64907105)*a(n) = 81*(282429536481*n^15 - 8943601988565*n^14 + 132044525265870*n^13 - 1206188364304287*n^12 + 7627178203628841*n^11 - 35382975568258428*n^10 + 124478964551078775*n^9 - 338415281830783431*n^8 + 717436315214480025*n^7 - 1187215577095780764*n^6 + 1522794566607803919*n^5 - 1488866286016780047*n^4 + 1075889068341959448*n^3 - 543536112365518695*n^2 + 172059320987344825*n - 25799292366848000)*a(n-1) - 387420489*(59049*n^7 - 688905*n^6 + 3484620*n^5 - 9940725*n^4 + 17352558*n^3 - 18650247*n^2 + 11527801*n - 3203200)*a(n-2). - Vaclav Kotesovec, Dec 07 2014
a(n) ~ 9^(9*(n-1)-1/2) / 8^(8*(n-1)-1/2) * n^(n-2) / exp(n-1). - Vaclav Kotesovec, Dec 07 2014

A251580 E.g.f.: exp(10*x*G(x)^9) / G(x)^9 where G(x) = 1 + x*G(x)^10 is the g.f. of A059968.

Original entry on oeis.org

1, 1, 10, 280, 13960, 1023760, 99935200, 12226859200, 1801725932800, 310890328768000, 61516405597830400, 13735605457885312000, 3416919943285809280000, 937247149729410729472000, 281051240591439955878400000, 91474949907165746668607488000, 32117399444469103248129863680000
Offset: 0

Views

Author

Paul D. Hanna, Dec 06 2014

Keywords

Comments

In general, Sum_{k=0..n} m^k * n!/k! * binomial(m*n-k-m, n-k) * (k-1)/(n-1) is for m>1 asymptotic to m^(m*(n-1)-1/2) / (m-1)^((m-1)*(n-1)-1/2) * n^(n-2) / exp(n-1). - Vaclav Kotesovec, Dec 07 2014

Examples

			E.g.f.: A(x) = 1 + x + 10*x^2/2! + 280*x^3/3! + 13960*x^4/4! + 1023760*x^5/5! +...
such that A(x) = exp(10*x*G(x)^9) / G(x)^9
where G(x) = 1 + x*G(x)^10 is the g.f. of A059968:
G(x) = 1 + x + 10*x^2 + 145*x^3 + 2470*x^4 + 46060*x^5 + 910252*x^6 +...
Note that
A'(x) = exp(10*x*G(x)^9) = 1 + 10*x + 280*x^2/2! + 13960*x^3/3! +...
LOGARITHMIC DERIVATIVE.
The logarithm of the e.g.f. begins:
log(A(x)) = x + 9*x^2/2 + 252*x^3/3 + 12654*x^4/4 + 933984*x^5/5 +...
and so A'(x)/A(x) = G(x)^9.
TABLE OF POWERS OF E.G.F.
Form a table of coefficients of x^k/k! in A(x)^n as follows.
n=1: [1, 1,  10,  280,  13960,  1023760,   99935200,  12226859200, ...];
n=2: [1, 2,  22,  620,  30760,  2243120,  217911520,  26556406400, ...];
n=3: [1, 3,  36, 1026,  50760,  3683880,  356283360,  43256151360, ...];
n=4: [1, 4,  52, 1504,  74344,  5374240,  517647520,  62621962240, ...];
n=5: [1, 5,  70, 2060, 101920,  7344920,  704861200,  84980501600, ...];
n=6: [1, 6,  90, 2700, 133920,  9629280,  921060720, 110691813600, ...];
n=7: [1, 7, 112, 3430, 170800, 12263440, 1169680960, 140152067440, ...];
n=8: [1, 8, 136, 4256, 213040, 15286400, 1454475520, 173796462080, ...]; ...
in which the main diagonal begins (see A251587):
[1, 2, 36, 1504, 101920, 9629280, 1169680960, 173796462080, ...]
and is given by the formula:
[x^n/n!] A(x)^(n+1) = 10^(n-8) * (n+1)^(n-9) * (4782969*n^8 + 50309748*n^7 + 237013938*n^6 + 655232760*n^5 + 1166624361*n^4 + 1374998212*n^3 + 1051760172*n^2 + 479277840*n + 100000000) for n>=0.
		

Crossrefs

Programs

  • Mathematica
    Flatten[{1,1,Table[Sum[10^k * n!/k! * Binomial[10*n-k-10, n-k] * (k-1)/(n-1),{k,0,n}],{n,2,20}]}] (* Vaclav Kotesovec, Dec 07 2014 *)
  • PARI
    {a(n) = local(G=1);for(i=1,n, G = 1 + x*G^10 +x*O(x^n)); n!*polcoeff( exp(10*x*G^9) / G^9, n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n) = if(n==0, 1, sum(k=0, n, 10^k * n!/k! * binomial(10*n-k-10,n-k)*if(n==1,1/10,(k-1)/(n-1)) ))}
    for(n=0, 20, print1(a(n), ", "))

Formula

Let G(x) = 1 + x*G(x)^10 be the g.f. of A059968, then the e.g.f. A(x) of this sequence satisfies:
(1) A'(x)/A(x) = G(x)^9.
(2) A'(x) = exp(10*x*G(x)^9).
(3) A(x) = exp( Integral G(x)^9 dx ).
(4) A(x) = exp( Sum_{n>=1} A234573(n-1)*x^n/n ), where A234573(n-1) = binomial(10*n-2,n)/(9*n-1).
(5) A(x) = F(x/A(x)) where F(x) is the e.g.f. of A251590.
(6) A(x) = Sum_{n>=0} A251590(n)*(x/A(x))^n/n! and
(7) [x^n/n!] A(x)^(n+1) = (n+1)*A251590(n),
where A251590(n) = 10^(n-8) * (n+1)^(n-10) * (4782969*n^8 + 50309748*n^7 + 237013938*n^6 + 655232760*n^5 + 1166624361*n^4 + 1374998212*n^3 + 1051760172*n^2 + 479277840*n + 100000000).
a(n) = Sum_{k=0..n} 10^k * n!/k! * binomial(10*n-k-10, n-k) * (k-1)/(n-1) for n>1.
Recurrence: 81*(3*n-5)*(3*n-4)*(9*n-17)*(9*n-16)*(9*n-14)*(9*n-13)*(9*n-11)*(9*n-10)*(250000*n^8 - 5300000*n^7 + 49332500*n^6 - 263500000*n^5 + 884055975*n^4 - 1909634570*n^3 + 2596659373*n^2 - 2035277286*n + 705468040)*a(n) = 800*(3125000000000*n^17 - 111562500000000*n^16 + 1872125000000000*n^15 - 19618187500000000*n^14 + 143829395937500000*n^13 - 783195370343750000*n^12 + 3281447638218750000*n^11 - 10810863753751875000*n^10 + 28370066880833218750*n^9 - 59681174371832246875*n^8 + 100725400409628775000*n^7 - 135736802338370325750*n^6 + 144424061701272600950*n^5 - 118936947986511839915*n^4 + 73322264536912326596*n^3 - 31942069342168467356*n^2 + 8798129066413437408*n - 1156512281566561920)*a(n-1) + 10000000000*(250000*n^8 - 3300000*n^7 + 19232500*n^6 - 64805000*n^5 + 138543475*n^4 - 193260670*n^3 + 172779013*n^2 - 91243350*n + 22054032)*a(n-2). - Vaclav Kotesovec, Dec 07 2014
a(n) ~ 10^(10*(n-1)-1/2) / 9^(9*(n-1)-1/2) * n^(n-2) / exp(n-1). - Vaclav Kotesovec, Dec 07 2014

A251664 E.g.f.: exp(4*x*G(x)^3) / G(x) where G(x) = 1 + x*G(x)^4 is the g.f. of A002293.

Original entry on oeis.org

1, 3, 26, 430, 10872, 373664, 16295152, 862486944, 53729041280, 3851892172288, 312411790027776, 28284076403710208, 2827642792215049216, 309396856974126428160, 36777992050266076762112, 4719560392385576181243904, 650284066459536965937364992, 95752333835299098922624876544, 15005473998204120386383308390400
Offset: 0

Views

Author

Paul D. Hanna, Dec 07 2014

Keywords

Examples

			E.g.f.: A(x) = 1 + 3*x + 26*x^2/2! + 430*x^3/3! + 10872*x^4/4! + 373664*x^5/5! +...
such that A(x) = exp(4*x*G(x)^3) / G(x)
where G(x) = 1 + x*G(x)^4 is the g.f. of A002293:
G(x) = 1 + x + 4*x^2 + 22*x^3 + 140*x^4 + 969*x^5 + 7084*x^6 +...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[4^k * n!/k! * Binomial[4*n-k-2,n-k] * (3*k-1)/(3*n-1),{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Dec 07 2014 *)
  • PARI
    {a(n)=local(G=1); for(i=0, n, G=1+x*G^4 +x*O(x^n)); n!*polcoeff(exp(4*x*G^3)/G, n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n) = sum(k=0, n, 4^k * n!/k! * binomial(4*n-k-2,n-k) * (3*k-1)/(3*n-1) )}
    for(n=0, 20, print1(a(n), ", "))

Formula

Let G(x) = 1 + x*G(x)^4 be the g.f. of A002293, then the e.g.f. A(x) of this sequence satisfies:
(1) A'(x)/A(x) = G(x)^3 + 2*G'(x)/G(x).
(2) A(x) = F(x/A(x)^3) where F(x) is the e.g.f. of A251694.
(3) A(x) = Sum_{n>=0} A251694(n)*(x/A(x)^3)^n/n! where A251694(n) = (2*n+1) * (3*n+1)^(n-2) * 4^n.
(4) [x^n/n!] A(x)^(3*n+1) = (2*n+1) * (3*n+1)^(n-1) * 4^n.
a(n) = Sum_{k=0..n} 4^k * n!/k! * binomial(4*n-k-2,n-k) * (3*k-1)/(3*n-1) for n>=0.
Recurrence: 3*(3*n-2)*(3*n-1)*(64*n^3 - 344*n^2 + 598*n - 315)*a(n) = 8*(2048*n^6 - 16128*n^5 + 51136*n^4 - 82160*n^3 + 67332*n^2 - 22212*n - 855)*a(n-1) + 256*(64*n^3 - 152*n^2 + 102*n + 3)*a(n-2). - Vaclav Kotesovec, Dec 07 2014
a(n) ~ 2^(8*n-2) / 3^(3*n-1/2) * n^(n-1) / exp(n-1). - Vaclav Kotesovec, Dec 07 2014

A251584 a(n) = 4^(n-2) * (n+1)^(n-4) * (3*n^2 + 13*n + 16).

Original entry on oeis.org

1, 1, 6, 82, 1856, 59904, 2533888, 133169152, 8384643072, 616038400000, 51781055676416, 4903194794655744, 516634816527990784, 59967828129860288512, 7604226293760000000000, 1046004175955626414833664, 155145294199098982239567872, 24683771056652857103433596928, 4193546668531304927540807729152, 757730637305085952000000000000000
Offset: 0

Views

Author

Paul D. Hanna, Dec 06 2014

Keywords

Examples

			E.g.f.: A(x) = 1 + x + 6*x^2/2! + 82*x^3/3! + 1856*x^4/4! + 59904*x^5/5! + ...
such that A(x) = exp( 4*x*A(x) * G(x*A(x))^3 ) / G(x*A(x))^3
where G(x) = 1 + x*G(x)^3 is the g.f. of A002293:
G(x) = 1 + x + 4*x^2 + 22*x^3 + 140*x^4 + 969*x^5 + 7084*x^6 + ...
RELATED SERIES.
Note that A(x) = F(x*A(x)) where F(x) = exp(4*x*G(x)^3)/G(x)^3,
F(x) = 1 + x + 4*x^2/2! + 40*x^3/3! + 712*x^4/4! + 18784*x^5/5! + ...
is the e.g.f. of A251574.
		

Crossrefs

Programs

  • Magma
    [4^(n - 2)*(n + 1)^(n - 4)*(3*n^2 + 13*n + 16): n in [0..50]]; // G. C. Greubel, Nov 13 2017
  • Mathematica
    Table[4^(n - 2)*(n + 1)^(n - 4)*(3*n^2 + 13*n + 16), {n, 0, 50}] (* G. C. Greubel, Nov 13 2017 *)
  • PARI
    {a(n) = 4^(n-2) * (n+1)^(n-4) * (3*n^2 + 13*n + 16) }
    for(n=0,20,print1(a(n),", "))
    
  • PARI
    {a(n) = local(G=1,A=1); for(i=1,n, G=1+x*G^4 +x*O(x^n));for(i=1,n, A = exp(4*x*A * subst(G^3,x,x*A) ) / subst(G^3,x,x*A) ); n!*polcoeff(A, n)}
    for(n=0, 20, print1(a(n), ", "))
    

Formula

Let G(x) = 1 + x*G(x)^4 be the g.f. of A002293, then the e.g.f. A(x) of this sequence satisfies:
(1) A(x) = exp( 4*x*A(x) * G(x*A(x))^3 ) / G(x*A(x))^3.
(2) A(x) = F(x*A(x)) where F(x) = exp(4*x*G(x)^3)/G(x)^3 is the e.g.f. of A251574.
(3) a(n) = [x^n/n!] F(x)^(n+1)/(n+1) where F(x) is the e.g.f. of A251574.
E.g.f.: -LambertW(-4*x) * (4 + LambertW(-4*x))^3 / (256*x). - Vaclav Kotesovec, Dec 07 2014
Showing 1-10 of 13 results. Next