A111160
G.f.: C - Z; where C is the g.f. for the Catalan numbers (A000108) and Z is the g.f. for A055113 with offset 0.
Original entry on oeis.org
0, 1, 1, 4, 9, 31, 91, 309, 1009, 3481, 11956, 42065, 148655, 532039, 1915369, 6950452, 25357233, 93034813, 342888250, 1269246437, 4715945712, 17583623988, 65766726906, 246694006971, 927801717255, 3497918129001, 13217196871126, 50046561077947
Offset: 0
- T. D. Noe, Table of n, a(n) for n=0..200
- C. Banderier, C. Krattenthaler, A. Krinik, D. Kruchinin, V. Kruchinin, D. Nguyen, and M. Wallner, Explicit formulas for enumeration of lattice paths: basketball and the kernel method, arXiv preprint arXiv:1609.06473 [math.CO], 2016.
- Jean-Luc Baril and José L. Ramírez, Knight's paths towards Catalan numbers, Univ. Bourgogne Franche-Comté (2022).
- D. G. Rogers, Comments on A111160, A055113 and A006013
-
I:=[1,1,4]; [0] cat [n le 3 select I[n] else (n*(115*n^3 - 344*n^2 + 299*n - 82)*Self(n-1) + 4*(2*n-3)*(5*n^3 + 27*n^2 - 74*n + 30)*Self(n-2) - 36*(n-2)*(2*n-5)*(2*n-3)*(5*n-3)*Self(n-3))/(2*n*(n+1)*(2*n+1)*(5*n-8)): n in [1..30]]; // Vincenzo Librandi, Oct 06 2015
-
a := n -> (-1)^(n+1)*binomial(2*n+1,n)*hypergeom([-n-1,n/2+1/2,n/2],[n,n+1],4)/ (2*n+1);
[0, op([seq(round(evalf(a(n),32)), n=1..27)])]; # Peter Luschny, Oct 06 2015
-
CoefficientList[ Series[ -((-3 + Sqrt[1 - 4*x] + Sqrt[2]*Sqrt[1 + Sqrt[1 - 4x] + 6x])/(4x)), {x, 0, 10}], x] (* Robert G. Wilson v *)
-
a(n) = if(n==0, 0, sum(k=0, (n+1)/2, binomial(n-k,n-2*k+1)*binomial(2*n+1,k))/(2*n+1)); \\ Altug Alkan, Oct 05 2015
A006013
a(n) = binomial(3*n+1,n)/(n+1).
Original entry on oeis.org
1, 2, 7, 30, 143, 728, 3876, 21318, 120175, 690690, 4032015, 23841480, 142498692, 859515920, 5225264024, 31983672534, 196947587823, 1219199353190, 7583142491925, 47365474641870, 296983176369495, 1868545312633440, 11793499763070480
Offset: 0
a(3) = 30 since the top row of Q^3 = (12, 12, 5, 1).
G.f. = 1 + 2*x + 7*x^2 + 30*x^3 + 143*x^4 + 728*x^5 + 3876*x^6 + 21318*x^7 + ... - _Michael Somos_, May 15 2022
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- G. C. Greubel, Table of n, a(n) for n = 0..1000 (terms n = 0..100 from T. D. Noe)
- A. Aggarwal, Armstrong's Conjecture for (k, mk+1)-Core Partitions, arXiv:1407.5134 [math.CO], 2014.
- C. Banderier and D. Merlini, Lattice paths with an infinite set of jumps, FPSAC02, Melbourne, 2002.
- Paul Barry, Jacobsthal Decompositions of Pascal's Triangle, Ternary Trees, and Alternating Sign Matrices, Journal of Integer Sequences, 19, (2016), #16.3.5.
- Paul Barry, Characterizations of the Borel triangle and Borel polynomials, arXiv:2001.08799 [math.CO], 2020.
- Paul Barry, Centered polygon numbers, heptagons and nonagons, and the Robbins numbers, arXiv:2104.01644 [math.CO], 2021.
- W. G. Brown, Enumeration of non-separable planar maps, Canad. J. Math., 15 (1963), 526-545.
- W. G. Brown, Enumeration of non-separable planar maps. [Annotated scanned copy]
- Naiomi Cameron and J. E. McLeod, Returns and Hills on Generalized Dyck Paths, Journal of Integer Sequences, 19 (2016), #16.6.1.
- F. Cazals, Combinatorics of Non-Crossing Configurations, Studies in Automatic Combinatorics, Volume II (1997).
- F. Chapoton, F. Hivert, and J.-C. Novelli, A set-operad of formal fractions and dendriform-like sub-operads, arXiv:1307.0092 [math.CO], 2013.
- F. Chapoton and S. Giraudo, Enveloping operads and bicoloured noncrossing configurations, arXiv:1310.4521 [math.CO], 2013.
- Jins de Jong, Alexander Hock, and Raimar Wulkenhaar, Catalan tables and a recursion relation in noncommutative quantum field theory, arXiv:1904.11231 [math-ph], 2019.
- C. Defant and N. Kravitz, Stack-sorting for words, arXiv:1809.09158 [math.CO], 2018.
- Isaac DeJager, Madeleine Naquin, and Frank Seidl, Colored Motzkin Paths of Higher Order, VERUM 2019.
- Emeric Deutsch, S. Feretic and M. Noy, Diagonally convex directed polyominoes and even trees: a bijection and related issues, Discrete Math., 256 (2002), 645-654.
- I. Gessel and G. Xin, The generating function of ternary trees and continued fractions, arXiv:math/0505217 [math.CO], 2005.
- Samuele Giraudo, Tree series and pattern avoidance in syntax trees, arXiv:1903.00677 [math.CO], 2019.
- Clemens Heuberger, Sarah J. Selkirk, and Stephan Wagner, Enumeration of Generalized Dyck Paths Based on the Height of Down-Steps Modulo k, arXiv:2204.14023 [math.CO], 2022.
- Hsien-Kuei Hwang, Mihyun Kang, and Guan-Huei Duh, Asymptotic Expansions for Sub-Critical Lagrangean Forms, LIPIcs Proceedings of Analysis of Algorithms 2018, Vol. 110. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2018.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 432 [broken link].
- Pakawut Jiradilok, Large-scale Rook Placements, arXiv:2204.00615 [math.CO], 2022.
- S. Kitaev and A. de Mier, Enumeration of fixed points of an involution on beta(1, 0)-trees, arXiv:1210.2618 [math.CO], 2012. - From _N. J. A. Sloane_, Dec 31 2012
- Sergey Kitaev, Anna de Mier, and Marc Noy, On the number of self-dual rooted maps, European J. Combin. 35 (2014), 377-387. MR3090510. See Theorem 1. - _N. J. A. Sloane_, May 19 2014
- Don Knuth, 20th Anniversary Christmas Tree Lecture.
- Philippe Leroux, An algebraic framework of weighted directed graphs, Int. J. Math. Math. Sci. 58. (2003).
- Philippe Leroux, L-algebras, triplicial-algebras, within an equivalence of categories motivated by graphs, arXiv:0709.3453 [math-ph], 2008.
- Ho-Hon Leung and Thotsaporn "Aek" Thanatipanonda, A Probabilistic Two-Pile Game, arXiv:1903.03274 [math.CO], 2019.
- Elżbieta Liszewska and Wojciech Młotkowski, Some relatives of the Catalan sequence, arXiv:1907.10725 [math.CO], 2019.
- Hugo Mlodecki, Decompositions of packed words and self duality of Word Quasisymmetric Functions, arXiv:2205.13949 [math.CO], 2022. See Table 4 p. 20.
- W. Mlotkowski and K. A. Penson, The probability measure corresponding to 2-plane trees, arXiv:1304.6544 [math.PR], 2013.
- Henri Muehle and Philippe Nadeau, A Poset Structure on the Alternating Group Generated by 3-Cycles, arXiv:1803.00540 [math.CO], 2018.
- Liviu I. Nicolaescu, Counting Morse functions on the 2-sphere, arXiv:math/0512496 [math.GT], 2005.
- J.-C. Novelli and J.-Y. Thibon, Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions, arXiv:1403.5962 [math.CO], 2014.
- M. Noy, Enumeration of noncrossing trees on a circle, Discrete Math., 180, 301-313, 1998.
- Isaac Owino Okoth, Bijections of k-plane trees, Open J. Discret. Appl. Math. (2022) Vol. 5, No. 1, 29-35.
- J.-B. Priez and A. Virmaux, Non-commutative Frobenius characteristic of generalized parking functions: Application to enumeration, arXiv:1411.4161 [math.CO], 2014-2015.
- Helmut Prodinger, On some questions by Cameron about ternary paths --- a linear algebra approach, arXiv:1910.02320 [math.CO], 2019.
- Helmut Prodinger, Sarah J. Selkirk, and Stephan Wagner, On two subclasses of Motzkin paths and their relation to ternary trees, arXiv:1902.01681 [math.CO], 2019.
- Jocelyn Quaintance, Combinatoric Enumeration of Two-Dimensional Proper Arrays, Discrete Math., 307 (2007), 1844-1864.
- Thomas M. Richardson, The three 'R's and Dual Riordan Arrays, arXiv:1609.01193 [math.CO], 2016.
- D. G. Rogers, Comments on A111160, A055113 and A006013.
- Joe Sawada, Jackson Sears, Andrew Trautrim, and Aaron Williams, Demystifying our Grandparent's De Bruijn Sequences with Concatenation Trees, arXiv:2308.12405 [math.CO], 2023.
- Michael Somos, Number Walls in Combinatorics.
- Jun Yan, Lattice paths enumerations weighted by ascent lengths, arXiv:2501.01152 [math.CO], 2025. See p. 7.
- Zhujun Zhang, A Note on Counting Dependency Trees, arXiv:1708.08789 [math.GM], 2017. See p. 3.
- S.-n. Zheng and S.-l. Yang, On the-Shifted Central Coefficients of Riordan Matrices, Journal of Applied Mathematics, Volume 2014, Article ID 848374, 8 pages.
These are the odd indices of
A047749.
Cf.
A305574 (the same with offset 1 and the initial 1 replaced with 5).
Cf.
A130564 (comment on c(k, n+1)).
-
a006013 n = a007318 (3 * n + 1) n `div` (n + 1)
a006013' n = a258708 (2 * n + 1) n
-- Reinhard Zumkeller, Jun 22 2015
-
[Binomial(3*n+1,n)/(n+1): n in [0..30]]; // Vincenzo Librandi, Mar 29 2015
-
Binomial[3#+1,#]/(#+1)&/@Range[0,30] (* Harvey P. Dale, Mar 16 2011 *)
-
A006013(n) = binomial(3*n+1,n)/(n+1) \\ M. F. Hasler, Jan 08 2024
-
from math import comb
def A006013(n): return comb(3*n+1,n)//(n+1) # Chai Wah Wu, Jul 30 2022
-
def A006013_list(n) :
D = [0]*(n+1); D[1] = 1
R = []; b = false; h = 1
for i in range(2*n) :
for k in (1..h) : D[k] += D[k-1]
if b : R.append(D[h]); h += 1
b = not b
return R
A006013_list(23) # Peter Luschny, May 03 2012
A187430
Number of nonnegative walks of n steps with step sizes 1 and 2, starting and ending at 0.
Original entry on oeis.org
1, 0, 2, 2, 11, 24, 93, 272, 971, 3194, 11293, 39148, 139687, 497756, 1798002, 6517194, 23807731, 87336870, 322082967, 1192381270, 4431889344, 16527495396, 61831374003, 231973133544, 872598922407, 3290312724374, 12434632908623, 47089829065940, 178672856753641
Offset: 0
The 11 length-4 walks are 0,2,4,2,0; 0,2,3,2,0; 0,2,3,1,0; 0,2,1,2,0; 0,2,0,2,0; 0,2,0,1,0; 0,1,3,2,0; 0,1,3,1,0; 0,1,2,1,0; 0,1,0,2,0; and 0,1,0,1,0.
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- C. Banderier, Analytic combinatorics of random walks and planar maps, PhD Thesis, 2001 , Example 11.
- C. Banderier, C. Krattenthaler, A. Krinik, D. Kruchinin, V. Kruchinin, D. Nguyen, and M. Wallner, Explicit formulas for enumeration of lattice paths: basketball and the kernel method, arXiv preprint arXiv:1609.06473 [math.CO], 2016.
- Jean-Luc Baril and José L. Ramírez, Knight's paths towards Catalan numbers, Univ. Bourgogne Franche-Comté (2022).
-
a:= proc(n) option remember; `if`(n<3, (n-1)*(3*n-2)/2,
((n+1)*(115*n^3-137*n^2-10*n+8) *a(n-1)
+4*(2*n-1)*(5*n^3+36*n^2-26*n-12) *a(n-2)
-36*(n-2)*(2*n-1)*(2*n-3)*(5*n+1) *a(n-3))
/ (2*(5*n-4)*(2*n+1)*(n+2)*(n+1)))
end:
seq(a(n), n=0..30); # Alois P. Heinz, May 16 2013
-
a[n_] := (Sum[Binomial[n+1, l]*Sum[Binomial[n-2*i-1, 2*l-1]*Binomial[n-l+1, i], {i, 0, (n-1)/2}], {l, 0, n+1}] + (((-1)^n+1)*Binomial[n+1, n/2])/2)/(n+1); Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Oct 24 2016, after Vladimir Kruchinin *)
-
a(n):=((sum(binomial(n+1,l)*sum(binomial(n-2*i-1,2*l-1)*binomial(n-l+1,i),i,0,(n-1)/2),l,0,n+1))+(((-1)^n+1)*binomial(n+1,n/2))/2)/(n+1); /* Vladimir Kruchinin, Jun 26 2015 */
-
al(n)={local(r,p);
r=vector(n);r[1]=p=1;
for(k=2,n,p*=1+x+x^3+x^4;p=(p-polcoeff(p,0)-polcoeff(p,1)*x)/x^2;r[k]=polcoeff(p,0));
r}
A211192
Consider all distinct functions f representable as x -> x^x^...^x with n x's and parentheses inserted in all possible ways; sequence gives difference between numbers of f with f(0)=1 and numbers of f with f(0)=0, with conventions that 0^0=1^0=1^1=1, 0^1=0.
Original entry on oeis.org
0, -1, 1, 0, 2, 1, 8, 10, 39, 72, 225, 506, 1434, 3550, 9767, 25391, 69293, 185061, 505843, 1372744, 3769842, 10339104, 28546539, 78890525, 218945822, 608657861, 1697106780, 4740593393, 13272626627, 37224982494, 104599603493, 294384019508, 829836855332
Offset: 0
There are A000081(4) = 4 functions f representable as x -> x^x^...^x with 4 x's and parentheses inserted in all possible ways: ((x^x)^x)^x, (x^x)^(x^x) == (x^(x^x))^x, x^((x^x)^x), x^(x^(x^x)). Only x^((x^x)^x) evaluates to 0 at x=0: 0^((0^0)^0) = 0^(1^0) = 0^1 = 0. Three functions evaluate to 1 at x=0: ((0^0)^0)^0 = (1^0)^0 = 1^0 = 1, (0^0)^(0^0) = 1^1 = 1, 0^(0^(0^0)) = 0^(0^1) = 0^0 = 1. Thus a(4) = 3-1 = 2.
a(8) = A222380(8) - A222379(8) = 77 - 38 = 39.
-
g:= proc(n, i) option remember; `if`(n=0, [0, 1], `if`(i<1, 0, (v->[v[1]-
v[2], v[2]])(add(((l, h)-> [binomial(l[2]+l[1]+j-1, j)*(h[1]+h[2]),
binomial(l[1]+j-1, j)*h[2]])(g(i-1$2), g(n-i*j, i-1)), j=0..n/i))))
end:
a:= n-> (f-> f[1]-f[2])(g(n-1$2)):
seq(a(n), n=0..40);
-
g[n_, i_] := g[n, i] = If[n==0, {0, 1}, If[i<1, {0, 0}, ({#[[1]]-#[[2]], #[[2]]}&)[Sum[Function[{l, h}, {(h[[1]]+h[[2]])*Binomial[j+l[[1]]+l[[2]] -1, j], h[[2]]*Binomial[j+l[[1]]-1, j]}][g[i-1, i-1]], g[n-i*j, i-1]]], {j, 0, Quotient[n, i]}]];
a[n_] := (#[[1]]-#[[2]]&)[g[n-1, n-1]]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 22 2017, translated from Maple *)
A222379
Number of distinct functions f representable as x -> x^x^...^x with n x's and parentheses inserted in all possible ways giving result f(0)=0, with conventions that 0^0=1^0=1^1=1, 0^1=0.
Original entry on oeis.org
0, 1, 0, 1, 1, 4, 6, 19, 38, 107, 247, 668, 1666, 4468, 11603, 31210, 83044, 224893, 607658, 1657966, 4528193, 12441364, 34254321, 94696165, 262389581, 729258392, 2031264865, 5671570468, 15867219821, 44480785907, 124913622052, 351393746745, 990048748684
Offset: 0
There are A000081(4) = 4 functions f representable as x -> x^x^...^x with 4 x's and parentheses inserted in all possible ways: ((x^x)^x)^x, (x^x)^(x^x) == (x^(x^x))^x, x^((x^x)^x), x^(x^(x^x)). Only x^((x^x)^x) evaluates to 0 at x=0: 0^((0^0)^0) = 0^(1^0) = 0^1 = 0. Thus a(4) = 1.
-
g:= proc(n, i) option remember; `if`(n=0, [0, 1], `if`(i<1, 0, (v->[v[1]-
v[2], v[2]])(add(((l, h)-> [binomial(l[2]+l[1]+j-1, j)*(h[1]+h[2]),
binomial(l[1]+j-1, j)*h[2]])(g(i-1$2), g(n-i*j, i-1)), j=0..n/i))))
end:
a:= n-> g(n-1$2)[2]:
seq(a(n), n=0..40);
-
f[l_, h_] := {Binomial[l[[2]] + l[[1]] + j - 1, j]*(h[[1]] + h[[2]]), Binomial[l[[1]] + j - 1, j]*h[[2]]};
g[n_, i_] := g[n, i] = If[n == 0, {0, 1}, If[i < 1, {0, 0}, Function[v, {v[[1]] - v[[2]], v[[2]]}][Sum[f[g[i - 1, i - 1], g[n - i*j, i - 1]], {j, 0, Quotient[n, i]}]]]];
a[n_] := g[n - 1, n - 1][[2]];
Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 27 2019, after Alois P. Heinz *)
A222380
Number of distinct functions f representable as x -> x^x^...^x with n x's and parentheses inserted in all possible ways giving result f(0)=1, with conventions that 0^0=1^0=1^1=1, 0^1=0.
Original entry on oeis.org
0, 0, 1, 1, 3, 5, 14, 29, 77, 179, 472, 1174, 3100, 8018, 21370, 56601, 152337, 409954, 1113501, 3030710, 8298035, 22780468, 62800860, 173586690, 481335403, 1337916253, 3728371645, 10412163861, 29139846448, 81705768401, 229513225545, 645777766253
Offset: 0
There are A000081(4) = 4 functions f representable as x -> x^x^...^x with 4 x's and parentheses inserted in all possible ways: ((x^x)^x)^x, (x^x)^(x^x) == (x^(x^x))^x, x^((x^x)^x), x^(x^(x^x)). Only x^((x^x)^x) evaluates to 0 at x=0: 0^((0^0)^0) = 0^(1^0) = 0^1 = 0. Three functions evaluate to 1 at x=0: ((0^0)^0)^0 = (1^0)^0 = 1^0 = 1, (0^0)^(0^0) = 1^1 = 1, 0^(0^(0^0)) = 0^(0^1) = 0^0 = 1. Thus a(4) = 3.
-
g:= proc(n, i) option remember; `if`(n=0, [0, 1], `if`(i<1, 0, (v->[v[1]-
v[2], v[2]])(add(((l, h)-> [binomial(l[2]+l[1]+j-1, j)*(h[1]+h[2]),
binomial(l[1]+j-1, j)*h[2]])(g(i-1$2), g(n-i*j, i-1)), j=0..n/i))))
end:
a:= n-> g(n-1$2)[1]:
seq(a(n), n=0..40);
-
f[l_, h_] := {Binomial[l[[2]] + l[[1]] + j - 1, j]*(h[[1]] + h[[2]]), Binomial[l[[1]] + j - 1, j]*h[[2]]};
g[n_, i_] := g[n, i] = If[n == 0, {0, 1}, If[i < 1, {0, 0}, Function[v, {v[[1]] - v[[2]], v[[2]]}][Sum[f[g[i - 1, i - 1], g[n - i*j, i - 1]], {j, 0, Quotient[n, i]}]]]];
a[n_] := g[n - 1, n - 1][[1]];
Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 27 2019, after Alois P. Heinz *)
A055392
Number of bracketings of 0#0#0#...#0 giving result 0, where 0#0 = 1, 0#1 = 1#0 = 1#1 = 0.
Original entry on oeis.org
1, 0, 2, 1, 12, 14, 100, 180, 990, 2310, 10920, 30030, 129612, 396576, 1620168, 5318841, 21029580, 72364578, 280735884, 997356360, 3828988020, 13905563100, 53108050320, 195875639310, 746569720572, 2784329809344, 10610782107800
Offset: 1
-
[(1/n)*(&+[(-1)^j*Binomial(2*j,j)*Binomial(2*n-j-2,n-j-1): j in [0..n-1]]): n in [1..30]]; // G. C. Greubel, Jan 12 2022
-
CoefficientList[ Series[1/2 + 1/2(3 - 2(1 - 4x)^(1/2))^(1/2), {x, 0, 27}], x] (* Robert G. Wilson v, May 04 2004 *)
-
{a(n)=if(n<1,0,polcoeff(serreverse(x - 2*x^3 - x^4 +x*O(x^n)),n))} /* Paul D. Hanna, Apr 05 2012 */
-
[(1/n)*sum( (-1)^j*binomial(2*j,j)*binomial(2*n-j-2,n-j-1) for j in (0..n-1) ) for n in (1..30)] # G. C. Greubel, Jan 12 2022
A055395
Number of bracketings of 0#0#0#...#0 giving result 0, where 0#0 = 0#1 = 1#0 = 1, 1#1 = 0.
Original entry on oeis.org
1, 0, 0, 1, 4, 12, 36, 116, 392, 1350, 4696, 16500, 58572, 209824, 757440, 2752185, 10057636, 36943044, 136319052, 505086728, 1878395920, 7009239644, 26235435248, 98475145476, 370584275964, 1397918543552, 5284861554816
Offset: 1
-
f[x_] := (1 - Sqrt[1 - 4*x])/2; CoefficientList[Series[(1 + 2*f[x] - Sqrt[1 + 4*(f[x])^2])/(2*x), {x, 0, 50}], x] (* G. C. Greubel, Jun 10 2016 *)
A306668
Difference between numbers of binary bracketings of 0^0^...^0 with n 0's giving the result 1 and those giving the result 0, with conventions that 0^0=1^0=1^1=1, 0^1=0.
Original entry on oeis.org
0, -1, 1, 0, 3, 4, 20, 50, 189, 588, 2100, 7116, 25344, 89298, 321178, 1156298, 4206059, 15356796, 56424836, 208137800, 771229684, 2867771004, 10700980956, 40050890172, 150328400292, 565699287186, 2133889856550, 8067040670100, 30559571239890, 115986196679730
Offset: 0
There are A000108(3) = 5 binary bracketings of 0^0^0^0: ((0^0)^0)^0, (0^0)^(0^0), (0^(0^0))^0, 0^((0^0)^0), 0^(0^(0^0)). Only 0^((0^0)^0) evaluates to 0: 0^((0^0)^0) = 0^(1^0) = 0^1 = 0. The four other bracketings evaluate to 1. Thus a(4) = 4-1 = 3.
-
b:= proc(n) option remember; `if`(n<2, [n, 0], add(((f, g)-> [f[1]*g[2],
f[1]*g[1] +f[2]*g[1] +f[2]*g[2]])(b(i), b(n-i)), i=1..n-1))
end:
a:= n-> (v-> v[2]-v[1])(b(n)):
seq(a(n), n=0..29);
# second Maple program:
a:= proc(n) option remember; `if`(n<2, -n, ((35*n^3-147*n^2+220*n-120)*
a(n-1)+18*(n-2)*(5*n-6)*(2*n-5)*a(n-2))/((2*(5*n-11))*(2*n-1)*n))
end:
seq(a(n), n=0..29);
-
a[n_] := a[n] = If[n<2, -n, ((35n^3 - 147n^2 + 220n - 120) a[n-1] + 18(n-2) (5n - 6)(2n - 5) a[n-2])/((2(5n - 11))(2n - 1)n)];
a /@ Range[0, 29] (* Jean-François Alcover, Apr 02 2021, after 2nd Maple program *)
A166135
Number of possible paths to each node that lies along the edge of a cut 4-nomial tree, that is rooted one unit from the cut.
Original entry on oeis.org
1, 1, 3, 7, 22, 65, 213, 693, 2352, 8034, 28014, 98505, 350548, 1256827, 4542395, 16517631, 60417708, 222087320, 820099720, 3040555978, 11314532376, 42243332130, 158196980682, 594075563613, 2236627194858, 8440468925400, 31921622746680, 120970706601255
Offset: 1
Rick Jarosh (rick(AT)jarosh.net), Oct 08 2009
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Cyril Banderier, Christian Krattenthaler, Alan Krinik, Dmitry Kruchinin, Vladimir Kruchinin, David Tuan Nguyen, and Michael Wallner, Explicit formulas for enumeration of lattice paths: basketball and the kernel method, arXiv:1609.06473 [math.CO], 2016.
- Jean-Luc Baril and José L. Ramírez, Knight's paths towards Catalan numbers, Univ. Bourgogne Franche-Comté (2022).
- Jérémie Bettinelli, Éric Fusy, Cécile Mailler, and Lucas Randazzo, A bijective study of Basketball walks, arXiv:1611.01478 [math.CO], 2016.
- Alexander Burstein and Louis W. Shapiro, Pseudo-involutions in the Riordan group, arXiv:2112.11595 [math.CO], 2021.
- Rick Jarosh, Illustration of 4-nomial graph The series is the one at the top.
- Rick Jarosh, First 4096 terms of the series in a text file.
- Rick Jarosh, Illustrates the sequence in context. The above reference gives the first 16 terms of the first 128 sequences in the family, of which this sequence is the third, the first being the Catalan numbers, the second the Motzkin integers, the fourth A104632.
A055113 is the third sequence from the top of the graph illustrated above.
-
[(&+[Binomial(n,k)*Binomial(n,2*n-3*k-1): k in [0..n]])/n : n in [1..30]]; // G. C. Greubel, Dec 12 2019
-
seq( add(binomial(n,k)*binomial(n,2*n-3*k-1), k=0..n)/n, n=1..30); # G. C. Greubel, Dec 12 2019
-
Rest[CoefficientList[Series[(Sqrt[(2-2Sqrt[1-4x]-3x)/x]-1)/2, {x, 0, 30}],x]] (* Benedict W. J. Irwin, Sep 24 2016 *)
-
vector(30, n, sum(k=0,n, binomial(n,k)*binomial(n,2*n-3*k-1))/n ) \\ G. C. Greubel, Dec 12 2019
-
[sum(binomial(n,k)*binomial(n,2*n-3*k-1) for k in (0..n))/n for n in (1..30)] # G. C. Greubel, Dec 12 2019
Showing 1-10 of 21 results.
Comments