cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A347953 G.f.: A(x) = 1/C(-x*T(x)^3), where C(x) = 1 + x*C(x)^2 is the g.f. of A000108 and T(x) = 1 + x*T(x)^3 is the g.f. of A001764.

Original entry on oeis.org

1, 1, 2, 8, 35, 171, 882, 4744, 26286, 149045, 860596, 5042968, 29913676, 179270434, 1083794310, 6601817952, 40479778395, 249646876065, 1547539929810, 9637085582640, 60260786147261, 378212395786511, 2381767469829332, 15045137488662048, 95304451461770250
Offset: 0

Views

Author

Alexander Burstein, Nov 02 2021

Keywords

Crossrefs

Programs

  • Maple
    cx := (1-sqrt(1-4*x))/2/x ;
    tx := 2/sqrt(3*x)*sin( 1/3*arcsin(sqrt(27*x/4))) ;
    gf := 1/subs(x=-x*tx^3,cx) ;
    taylor(%,x=0,40) ;
    gfun[seriestolist](%) ; # R. J. Mathar, Jul 20 2023
  • Mathematica
    CoefficientList[y/.AsymptoticSolve[y-1-x(1-y+y^2)^3/y==0,y->1,{x,0,24}][[1]],x]
  • PARI
    seq(n) = {Vec(1/subst((1 - sqrt(1 - 4*x + O(x^2*x^n))) / (2*x), x, -serreverse(x / (1+x)^3 + O(x*x^n))))} \\ Andrew Howroyd, Nov 22 2021

Formula

G.f.: A(-x*A(x)^3) = 1/A(x).
G.f.: The series reversion of x*A(x)^3 is x*A(-x)^3.
G.f.: A(x) satisfies A(x) = 1 + x*(1 - A(x) + A(x)^2)^3/A(x).
D-finite with recurrence +4*n*(4*n-1)*(4*n+1)*a(n) +6*(-342*n^3+1233*n^2-1453*n+542)*a(n-1) +243*(n-2)*(33*n^2-123*n+112)*a(n-2) +2187*(n-3)*(3*n-4)*(3*n-8)*a(n-3)=0. - R. J. Mathar, Jul 20 2023

A372370 Coefficient of x^n in the expansion of ( (1+x+x^2)^2 / (1+x) )^n.

Original entry on oeis.org

1, 1, 5, 13, 53, 176, 677, 2451, 9333, 34978, 133580, 508806, 1953701, 7509178, 28981643, 112046213, 434289525, 1686080622, 6557830310, 25542229740, 99622788428, 389023326600, 1520817551742, 5951305115982, 23310374278437, 91380414955176, 358506409488102
Offset: 0

Views

Author

Seiichi Manyama, Apr 28 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=SeriesCoefficient[((1+x+x^2)^2/(1+x))^n,{x,0,n}]; Array[a,27,0] (* Stefano Spezia, Apr 30 2024 *)
  • PARI
    a(n, s=2, t=2, u=-1) = sum(k=0, n\s, binomial(t*n, k)*binomial((t+u)*n-k, n-s*k));

Formula

a(n) = Sum_{k=0..floor(n/2)} binomial(2*n,k) * binomial(n-k,n-2*k).
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x * (1+x) / (1+x+x^2)^2 ).
Showing 1-2 of 2 results.