cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A215703 A(n,k) is the n-th derivative of f_k at x=1, and f_k is the k-th of all functions that are representable as x^x^...^x with m>=1 x's and parentheses inserted in all possible ways; square array A(n,k), n>=0, k>=1, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 0, 1, 1, 2, 0, 1, 1, 4, 3, 0, 1, 1, 2, 12, 8, 0, 1, 1, 6, 9, 52, 10, 0, 1, 1, 4, 27, 32, 240, 54, 0, 1, 1, 2, 18, 156, 180, 1188, -42, 0, 1, 1, 2, 15, 100, 1110, 954, 6804, 944, 0, 1, 1, 8, 9, 80, 650, 8322, 6524, 38960, -5112, 0, 1, 1, 6, 48, 56, 590, 4908, 70098, 45016, 253296, 47160, 0
Offset: 0

Views

Author

Alois P. Heinz, Aug 21 2012

Keywords

Comments

A000081(m) distinct functions are representable as x^x^...^x with m>=1 x's and parentheses inserted in all possible ways. Some functions are representable in more than one way, the number of valid parenthesizations is A000108(m-1). The f_k are ordered, such that the number m of x's in f_k is a nondecreasing function of k. The exact ordering is defined by the algorithm below.
The list of functions f_1, f_2, ... begins:
| f_k : m : function (tree) : representation(s) : sequence |
+-----+---+------------------+--------------------------+----------+
| f_1 | 1 | x -> x | x | A019590 |
| f_2 | 2 | x -> x^x | x^x | A005727 |
| f_3 | 3 | x -> x^(x*x) | (x^x)^x | A215524 |
| f_4 | 3 | x -> x^(x^x) | x^(x^x) | A179230 |
| f_5 | 4 | x -> x^(x*x*x) | ((x^x)^x)^x | A215704 |
| f_6 | 4 | x -> x^(x^x*x) | (x^x)^(x^x), (x^(x^x))^x | A215522 |
| f_7 | 4 | x -> x^(x^(x*x)) | x^((x^x)^x) | A215705 |
| f_8 | 4 | x -> x^(x^(x^x)) | x^(x^(x^x)) | A179405 |

Examples

			Square array A(n,k) begins:
  1,   1,    1,    1,     1,     1,     1,     1, ...
  1,   1,    1,    1,     1,     1,     1,     1, ...
  0,   2,    4,    2,     6,     4,     2,     2, ...
  0,   3,   12,    9,    27,    18,    15,     9, ...
  0,   8,   52,   32,   156,   100,    80,    56, ...
  0,  10,  240,  180,  1110,   650,   590,   360, ...
  0,  54, 1188,  954,  8322,  4908,  5034,  2934, ...
  0, -42, 6804, 6524, 70098, 41090, 47110, 26054, ...
		

Crossrefs

Programs

  • Maple
    T:= proc(n) T(n):=`if`(n=1, [x], map(h-> x^h, g(n-1$2))) end:
    g:= proc(n, i) option remember; `if`(i=1, [x^n], [seq(seq(
          seq(mul(T(i)[w[t]-t+1], t=1..j)*v, v=g(n-i*j, i-1)), w=
          combinat[choose]([$1..nops(T(i))+j-1], j)), j=0..n/i)])
        end:
    f:= proc() local i, l; i, l:= 0, []; proc(n) while n>
          nops(l) do i:= i+1; l:= [l[], T(i)[]] od; l[n] end
        end():
    A:= (n, k)-> n!*coeff(series(subs(x=x+1, f(k)), x, n+1), x, n):
    seq(seq(A(n, 1+d-n), n=0..d), d=0..12);
  • Mathematica
    T[n_] := If[n == 1, {x}, Map[x^#&, g[n - 1, n - 1]]];
    g[n_, i_] := g[n, i] = If[i == 1, {x^n}, Flatten @ Table[ Table[ Table[ Product[T[i][[w[[t]] - t + 1]], {t, 1, j}]*v, {v, g[n - i*j, i - 1]}], {w, Subsets[ Range[ Length[T[i]] + j - 1], {j}]}], {j, 0, n/i}]];
    f[n_] := Module[{i = 0, l = {}}, While[n > Length[l], i++; l = Join[l, T[i]]]; l[[n]]];
    A[n_, k_] := n! * SeriesCoefficient[f[k] /. x -> x+1, {x, 0, n}];
    Table[Table[A[n, 1+d-n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Nov 08 2019, after Alois P. Heinz *)

A222379 Number of distinct functions f representable as x -> x^x^...^x with n x's and parentheses inserted in all possible ways giving result f(0)=0, with conventions that 0^0=1^0=1^1=1, 0^1=0.

Original entry on oeis.org

0, 1, 0, 1, 1, 4, 6, 19, 38, 107, 247, 668, 1666, 4468, 11603, 31210, 83044, 224893, 607658, 1657966, 4528193, 12441364, 34254321, 94696165, 262389581, 729258392, 2031264865, 5671570468, 15867219821, 44480785907, 124913622052, 351393746745, 990048748684
Offset: 0

Views

Author

Alois P. Heinz, Feb 17 2013

Keywords

Comments

A000081(n) distinct functions are representable as x -> x^x^...^x with n x's and parentheses inserted in all possible ways. Some functions are representable in more than one way, the number of valid parenthesizations is A000108(n-1) for n>0.

Examples

			There are A000081(4) = 4 functions f representable as x -> x^x^...^x with 4 x's and parentheses inserted in all possible ways: ((x^x)^x)^x, (x^x)^(x^x) == (x^(x^x))^x, x^((x^x)^x), x^(x^(x^x)).  Only x^((x^x)^x) evaluates to 0 at x=0: 0^((0^0)^0) = 0^(1^0) = 0^1 = 0. Thus a(4) = 1.
		

Crossrefs

Programs

  • Maple
    g:= proc(n, i) option remember; `if`(n=0, [0, 1], `if`(i<1, 0, (v->[v[1]-
          v[2], v[2]])(add(((l, h)-> [binomial(l[2]+l[1]+j-1, j)*(h[1]+h[2]),
          binomial(l[1]+j-1, j)*h[2]])(g(i-1$2), g(n-i*j, i-1)), j=0..n/i))))
        end:
    a:= n-> g(n-1$2)[2]:
    seq(a(n), n=0..40);
  • Mathematica
    f[l_, h_] := {Binomial[l[[2]] + l[[1]] + j - 1, j]*(h[[1]] + h[[2]]), Binomial[l[[1]] + j - 1, j]*h[[2]]};
    g[n_, i_] := g[n, i] = If[n == 0, {0, 1}, If[i < 1, {0, 0}, Function[v, {v[[1]] - v[[2]], v[[2]]}][Sum[f[g[i - 1, i - 1], g[n - i*j, i - 1]], {j, 0, Quotient[n, i]}]]]];
    a[n_] := g[n - 1, n - 1][[2]];
    Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 27 2019, after Alois P. Heinz *)

Formula

A222380(n) + a(n) = A000081(n).
A222380(n) - a(n) = A211192(n).
a(n) = Sum_{i=A087803(n-1)+1..A087803(n)} (1-A306710(i)).

A222380 Number of distinct functions f representable as x -> x^x^...^x with n x's and parentheses inserted in all possible ways giving result f(0)=1, with conventions that 0^0=1^0=1^1=1, 0^1=0.

Original entry on oeis.org

0, 0, 1, 1, 3, 5, 14, 29, 77, 179, 472, 1174, 3100, 8018, 21370, 56601, 152337, 409954, 1113501, 3030710, 8298035, 22780468, 62800860, 173586690, 481335403, 1337916253, 3728371645, 10412163861, 29139846448, 81705768401, 229513225545, 645777766253
Offset: 0

Views

Author

Alois P. Heinz, Feb 17 2013

Keywords

Comments

A000081(n) distinct functions are representable as x -> x^x^...^x with n x's and parentheses inserted in all possible ways. Some functions are representable in more than one way, the number of valid parenthesizations is A000108(n-1) for n>0.

Examples

			There are A000081(4) = 4 functions f representable as x -> x^x^...^x with 4 x's and parentheses inserted in all possible ways: ((x^x)^x)^x, (x^x)^(x^x) == (x^(x^x))^x, x^((x^x)^x), x^(x^(x^x)).  Only x^((x^x)^x) evaluates to 0 at x=0: 0^((0^0)^0) = 0^(1^0) = 0^1 = 0.  Three functions evaluate to 1 at x=0: ((0^0)^0)^0 = (1^0)^0 = 1^0 = 1, (0^0)^(0^0) = 1^1 = 1, 0^(0^(0^0)) = 0^(0^1) = 0^0 = 1. Thus a(4) = 3.
		

Crossrefs

Programs

  • Maple
    g:= proc(n, i) option remember; `if`(n=0, [0, 1], `if`(i<1, 0, (v->[v[1]-
          v[2], v[2]])(add(((l, h)-> [binomial(l[2]+l[1]+j-1, j)*(h[1]+h[2]),
          binomial(l[1]+j-1, j)*h[2]])(g(i-1$2), g(n-i*j, i-1)), j=0..n/i))))
        end:
    a:= n-> g(n-1$2)[1]:
    seq(a(n), n=0..40);
  • Mathematica
    f[l_, h_] := {Binomial[l[[2]] + l[[1]] + j - 1, j]*(h[[1]] + h[[2]]), Binomial[l[[1]] + j - 1, j]*h[[2]]};
    g[n_, i_] := g[n, i] = If[n == 0, {0, 1}, If[i < 1, {0, 0}, Function[v, {v[[1]] - v[[2]], v[[2]]}][Sum[f[g[i - 1, i - 1], g[n - i*j, i - 1]], {j, 0, Quotient[n, i]}]]]];
    a[n_] := g[n - 1, n - 1][[1]];
    Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 27 2019, after Alois P. Heinz *)

Formula

a(n) + A222379(n) = A000081(n).
a(n) - A222379(n) = A211192(n).
a(n) = Sum_{i=A087803(n-1)+1..A087803(n)} A306710(i).

A306668 Difference between numbers of binary bracketings of 0^0^...^0 with n 0's giving the result 1 and those giving the result 0, with conventions that 0^0=1^0=1^1=1, 0^1=0.

Original entry on oeis.org

0, -1, 1, 0, 3, 4, 20, 50, 189, 588, 2100, 7116, 25344, 89298, 321178, 1156298, 4206059, 15356796, 56424836, 208137800, 771229684, 2867771004, 10700980956, 40050890172, 150328400292, 565699287186, 2133889856550, 8067040670100, 30559571239890, 115986196679730
Offset: 0

Views

Author

Alois P. Heinz, Mar 04 2019

Keywords

Comments

The total number of binary bracketings of 0^0^...^0 with n 0's is A000108(n-1) for n > 0.

Examples

			There are A000108(3) = 5 binary bracketings of 0^0^0^0: ((0^0)^0)^0, (0^0)^(0^0), (0^(0^0))^0, 0^((0^0)^0), 0^(0^(0^0)). Only 0^((0^0)^0) evaluates to 0: 0^((0^0)^0) = 0^(1^0) = 0^1 = 0. The four other bracketings evaluate to 1. Thus a(4) = 4-1 = 3.
		

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n<2, [n, 0], add(((f, g)-> [f[1]*g[2],
          f[1]*g[1] +f[2]*g[1] +f[2]*g[2]])(b(i), b(n-i)), i=1..n-1))
        end:
    a:= n-> (v-> v[2]-v[1])(b(n)):
    seq(a(n), n=0..29);
    # second Maple program:
    a:= proc(n) option remember; `if`(n<2, -n, ((35*n^3-147*n^2+220*n-120)*
          a(n-1)+18*(n-2)*(5*n-6)*(2*n-5)*a(n-2))/((2*(5*n-11))*(2*n-1)*n))
        end:
    seq(a(n), n=0..29);
  • Mathematica
    a[n_] := a[n] = If[n<2, -n, ((35n^3 - 147n^2 + 220n - 120) a[n-1] + 18(n-2) (5n - 6)(2n - 5) a[n-2])/((2(5n - 11))(2n - 1)n)];
    a /@ Range[0, 29] (* Jean-François Alcover, Apr 02 2021, after 2nd Maple program *)

Formula

a(n) = A111160(n-1) - A055113(n) for n > 0.
a(n) is odd <=> n in { A000079 }.

A258592 Values of k such that the number of rooted trees with k nodes (A000081(k)) is even.

Original entry on oeis.org

0, 3, 4, 6, 7, 9, 11, 12, 13, 19, 20, 21, 24, 26, 29, 31, 32, 34, 36, 37, 39, 41, 43, 44, 45, 46, 47, 48, 51, 52, 53, 54, 55, 57, 58, 59, 60, 62, 63, 66, 69, 70, 72, 79, 80, 81, 83, 85, 86, 88, 89, 90, 91, 92, 94, 95, 96, 97, 100, 101, 102, 103, 105, 106, 107
Offset: 1

Views

Author

Vladimir Reshetnikov, Nov 06 2015

Keywords

Comments

Complement of A263831.

Crossrefs

Programs

  • Mathematica
    Module[{t}, t[1] = 1; t[k_] := t[k] = Sum[DivisorSum[k-m, t[#] # &] t[m]/(k-1), {m, k-1}]; Select[Range[0, 107], EvenQ@t[#] &]] (* after Alois P. Heinz *)

A263831 Values of k such that the number of rooted trees with k nodes (A000081(k)) is odd.

Original entry on oeis.org

1, 2, 5, 8, 10, 14, 15, 16, 17, 18, 22, 23, 25, 27, 28, 30, 33, 35, 38, 40, 42, 49, 50, 56, 61, 64, 65, 67, 68, 71, 73, 74, 75, 76, 77, 78, 82, 84, 87, 93, 98, 99, 104, 108, 113, 114, 115, 117, 118, 119, 120, 121, 122, 123, 124, 127, 128, 135, 137, 138, 139
Offset: 1

Views

Author

Vladimir Reshetnikov, Nov 03 2015

Keywords

Comments

Complement of A258592.

Crossrefs

Programs

  • Mathematica
    Module[{t}, t[1] = 1; t[k_] := t[k] = Sum[DivisorSum[k-m, t[#] # &] t[m]/(k-1), {m, k-1}]; Select[Range[140], OddQ@t[#] &]] (* after Alois P. Heinz *)
Showing 1-6 of 6 results.