cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A055113 Number of bracketings of 0^0^0^...^0, with n 0's, giving the result 0, with conventions that 0^0 = 1^0 = 1^1 = 1, 0^1 = 0.

Original entry on oeis.org

0, 1, 0, 1, 1, 5, 11, 41, 120, 421, 1381, 4840, 16721, 59357, 210861, 759071, 2744393, 10000437, 36609977, 134750450, 498016753, 1848174708, 6882643032, 25715836734, 96365606679, 362102430069, 1364028272451, 5150156201026, 19486989838057, 73880877535315
Offset: 0

Views

Author

Jeppe Stig Nielsen, Jun 15 2000

Keywords

Comments

Total number of bracketings of 0^0^...^0 is A000108(n-1) (this is Catalan's problem). So the number of bracketings giving 1 is A000108(n-1) - a(n).
Also bracketings of f => f => ... => f where f is "false" and "=>" is implication.
Self-convolution yields A187430. - Paul D. Hanna, May 31 2015
Also, number of nonnegative walks of n steps with step sizes 1 and 2, starting at 0 and ending at 1. - Andrew Howroyd, Dec 23 2017
Series reversion is related to A001006. - F. Chapoton, Jul 14 2021

Examples

			Number of bracketings of 0^0^0^0^0^0 giving 0 is 11, so a(6) = 11.
From _Jon E. Schoenfield_, Dec 24 2017: (Start)
The 11 ways of parenthesizing 0^0^0^0^0^0 to obtain 0 are
0^(0^(0^((0^0)^0))) = 0^(0^(0^(1^0))) = 0^(0^(0^1)) = 0^(0^0) = 0^1 = 0;
0^((0^0)^(0^(0^0))) = 0^(1^(0^1)) = 0^(1^0) = 0^1 = 0;
0^((0^0)^((0^0)^0)) = 0^(1^(1^0)) = 0^(1^1) = 0^1 = 0;
0^(((0^0)^0)^(0^0)) = 0^((1^0)^1) = 0^(1^1) = 0^1 = 0;
0^((0^(0^(0^0)))^0) = 0^((0^(0^1))^0) = 0^((0^0)^0) = 0^(1^0) = 0^1 = 0;
0^((0^((0^0)^0))^0) = 0^((0^(1^0))^0) = 0^((0^1)^0) = 0^(0^0) = 0^1 = 0;
0^(((0^0)^(0^0))^0) = 0^((1^1)^0) = 0^(1^0) = 0^1 = 0;
0^(((0^(0^0))^0)^0) = 0^(((0^1)^0)^0) = 0^((0^0)^0) = 0^(1^0) = 0^1 = 0;
0^((((0^0)^0)^0)^0) = 0^(((1^0)^0)^0) = 0^((1^0)^0) = 0^(1^0) = 0^1 = 0;
(0^(0^0))^((0^0)^0) = (0^1)^(1^0) = 0^1 = 0;
(0^((0^0)^0))^(0^0) = (0^(1^0))^1. (End)
		

References

  • Thanks to Soren Galatius Smith, Jesper Torp Kristensen et al.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<3, n*(2-n),
          ((n-1)*(115*n^3-689*n^2+1332*n-840) *a(n-1)
           +(8*n-20)*(5*n^3+12*n^2-113*n+126) *a(n-2)
           -36*(n-3)*(5*n-8)*(2*n-5)*(2*n-7)  *a(n-3))
          /((2*(2*n-1))*(5*n-13)*n*(n-1)))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Mar 04 2019
  • Mathematica
    Rest[ CoefficientList[ Series[(-1 - Sqrt[1 - 4x] + Sqrt[2]Sqrt[1 + Sqrt[1 - 4x] + 6x])/4, {x, 0, 28}], x]] (* Robert G. Wilson v, Oct 28 2005 *)
    a[n_] := (-1)^(n+1)*Binomial[2n-1, n]*HypergeometricPFQ[{1-n, (n+1)/2, n/2}, {n, n+1}, 4]/(2n-1);
    Array[a, 27] (* Jean-François Alcover, Dec 26 2017, after Vladimir Kruchinin *)
  • Maxima
    a(n):= sum(binomial(2*j+n-1,j+n-1)*(-1)^(n-j-1)*binomial(2*n-1,j+n), j,0,n-1)/(2*n-1); /* Vladimir Kruchinin, May 10 2011 */
    
  • PARI
    a(n)={sum(j=0, n-1, binomial(2*j+n-1, j+n-1)*(-1)^(n-j-1)*binomial(2*n-1, j+n))/(2*n-1)} \\ Andrew Howroyd, Dec 23 2017
    
  • PARI
    first(n) = x='x+O('x^(n+1)); Vec(-((1 - 4*x)^(1/2) + 1)/4 + (2 + 2*(1 - 4*x)^(1/2) + 12*x)^(1/2)/4) \\ Iain Fox, Dec 23 2017

Formula

G.f.: - 1/4 - (1/4)*(1 - 4*x)^(1/2) + (1/4)*(2 + 2*(1 - 4*x)^(1/2) + 12*x)^(1/2).
The ratio a(n)/A000108(n-1) converges to (5-sqrt(5))/10 as n->oo.
a(n) = (Sum_{j=0..n-1} binomial(2*j+n-1, j+n-1)*(-1)^(n-j-1)*binomial(2*n-1, j+n))/(2*n-1). - Vladimir Kruchinin, May 10 2011
a(n) ~ (1-1/sqrt(5))*2^(2*n-3)/(sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Aug 09 2013
D-finite with recurrence: 2*n*(2*n-1)*(n-1)*a(n) -(n-1)*(19*n^2-60*n+48)*a(n-1) +(-31*n^3+173*n^2-346*n+264)*a(n-2) +4*(2*n-7)*(17*n^2-83*n+102)*a(n-3) +36*(2*n-7)*(2*n-9)*(n-4)*a(n-4)=0. - R. J. Mathar, Feb 20 2020
a(n) + A111160(n) = A000108(n). - F. Chapoton, Jul 14 2021

Extensions

a(0)=0 prepended by Alois P. Heinz, Mar 04 2019

A055395 Number of bracketings of 0#0#0#...#0 giving result 0, where 0#0 = 0#1 = 1#0 = 1, 1#1 = 0.

Original entry on oeis.org

1, 0, 0, 1, 4, 12, 36, 116, 392, 1350, 4696, 16500, 58572, 209824, 757440, 2752185, 10057636, 36943044, 136319052, 505086728, 1878395920, 7009239644, 26235435248, 98475145476, 370584275964, 1397918543552, 5284861554816
Offset: 1

Views

Author

Jeppe Stig Nielsen, Jun 24 2000

Keywords

Comments

Operation # can be interpreted as NOT AND. The ratio a(n)/A000108(n-1) converges to (2-sqrt(2))/2. Thanks to Soren Galatius Smith

Crossrefs

Programs

  • Mathematica
    f[x_] := (1 - Sqrt[1 - 4*x])/2; CoefficientList[Series[(1 + 2*f[x] - Sqrt[1 + 4*(f[x])^2])/(2*x), {x, 0, 50}], x] (* G. C. Greubel, Jun 10 2016 *)

Formula

G.f.: 1 - (1/2)*(1 - 4*x)^(1/2) - (1/2)*(3 - 2*(1 - 4*x)^(1/2) - 4*x)^(1/2).
G.f.: (1 + 2*C(x) - sqrt(1 + 4*C(x)^2))/2, where C(x) = (1 - sqrt(1 - 4*x))/2 is the g.f. of the Catalan numbers (A000108). - Paul D. Hanna, Jun 10 2016
G.f. A(x) satisfies: A(x) = x + (A(x) - C(x))^2, where C(x) = x + C(x)^2 is a g.f. of the Catalan numbers (A000108). - Paul D. Hanna, Jun 11 2016

A112519 Riordan array (1, x*c(x)*c(-x*c(x))), c(x) the g.f. of A000108.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 1, 4, 0, 1, 0, 12, 2, 6, 0, 1, 0, 14, 28, 3, 8, 0, 1, 0, 100, 32, 48, 4, 10, 0, 1, 0, 180, 249, 54, 72, 5, 12, 0, 1, 0, 990, 440, 455, 80, 100, 6, 14, 0, 1, 0, 2310, 2552, 792, 726, 110, 132, 7, 16, 0, 1, 0, 10920, 5876, 4836, 1248, 1070, 144, 168, 8, 18, 0, 1
Offset: 0

Views

Author

Paul Barry, Sep 09 2005

Keywords

Comments

Row sums are A112520. Second column is essentially A055392. Inverse is A112517. Riordan array product (1, x*c(x))*(1, x*c(-x)).

Examples

			Triangle begins
  1;
  0,   1;
  0,   0,   1;
  0,   2,   0,   1;
  0,   1,   4,   0,  1;
  0,  12,   2,   6,  0,   1;
  0,  14,  28,   3,  8,   0,  1;
  0, 100,  32,  48,  4,  10,  0,  1;
  0, 180, 249,  54, 72,   5, 12,  0, 1;
  0, 990, 440, 455, 80, 100,  6, 14, 0, 1;
		

Crossrefs

Programs

  • Magma
    A112519:= func< n,k | n eq 0 and k eq 0 select 1 else (k/n)*(&+[(-1)^j*Binomial(2*n-k-j-1, n-k-j)*Binomial(2*j+k-1, j): j in [0..n-k]]) >;
    [A112519(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Jan 12 2022
    
  • Mathematica
    (* First program *)
    c[x_]:= (1 - Sqrt[1-4x])/(2x);
    (* The function RiordanArray is defined in A256893. *)
    RiordanArray[1&, # c[#] c[-# c[#]]&, 12] // Flatten (* Jean-François Alcover, Jul 16 2019 *)
    (* Second program *)
    T[n_, k_]:= If[k==n, 1, (k/n)*Binomial[2*n-k-1, n-1]*HypergeometricPFQ[{k-n, k/2, (1+k)/2}, {k-2*n+1, k}, -4]];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Jan 12 2022 *)
  • Sage
    @CachedFunction
    def A112519(n,k):
        if (k==n): return 1
        else: return (k/n)*sum( (-1)^j*binomial(2*n-k-j-1, n-k-j)*binomial(2*j+k-1, j) for j in (0..n-k) )
    flatten([[A112519(n,k) for k in (0..n)] for n in (0..10)]) # G. C. Greubel, Jan 12 2022

Formula

Riordan array (1, (sqrt(3-2*sqrt(1-4*x)) - 1)/2).
T(n, k) = (k/n)*Sum_{j=0..n} (-1)^(j-k)*C(2*n-j-1, n-j)*C(2*j-k-1, j-k), with T(0, 0) = 1.
T(n, k) = (k/n)*binomial(2*n-k-1, n-1)*Hypergoemetric3F2([k-n, k/2, (1+k)/2], [k-2*n+1, k], -4), with T(0, 0) = 1. - G. C. Greubel, Jan 12 2022

A112521 Sequence related to NOR bracketings.

Original entry on oeis.org

0, 1, 0, 6, 4, 60, 84, 700, 1440, 8910, 23100, 120120, 360360, 1684956, 5552064, 24302520, 85101456, 357502860, 1302562404, 5333981796, 19947127200, 80408748420, 305922388200, 1221485157360, 4701015343440, 18664243014300
Offset: 0

Views

Author

Paul Barry, Sep 09 2005

Keywords

Comments

Conjecture: Starting with n=1, a(n) is the main diagonal of the array defined as T(1,1) = 1, T(i,j) = 0 if i<1 or j<1, T(n,k) = T(n,k-2) + T(n,k-1) -2*T(n-1,k-1) + T(n-1,k) + T(n-2,k). - Gerald McGarvey, Oct 07 2008

Crossrefs

Cf. A055392.

Programs

  • Mathematica
    a[n_]:= Sum[(-1)^j*Binomial[2*j, j]*Binomial[2*n-j-2, n-j-1], {j,0,n-1}];
    Table[a[n], {n,0,30}] (* G. C. Greubel, Jan 11 2022 *)
  • PARI
    a(n) = sum(j=0,n, (-1)^(j-1)*binomial(2*n-j-1, n-j)*binomial(2*(j-1), j-1)); \\ Michel Marcus, Aug 19 2014
    
  • Sage
    def a(n): return n if (n<2) else binomial(2*n-2, n-1)*simplify( hypergeometric([-(n-1), 1/2], [2-2*n], -4) )
    [a(n) for n in (0..30)] # G. C. Greubel, Jan 11 2022

Formula

a(n) = Sum_{j=0..n} (-1)^(j-1)*C(2*n-j-1, n-j)*C(2*(j-1), j-1). - corrected by Peter Bala, Aug 19 2014
a(n) = n*A055392(n), n>1.
a(n) = binomial(2*n-2, n-1)*Hypergeometric([-(n-1), 1/2], [2-2*n], -4) with a(0) = 0, a(1) = 1. - G. C. Greubel, Jan 11 2022
Showing 1-4 of 4 results.