cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A055392 Number of bracketings of 0#0#0#...#0 giving result 0, where 0#0 = 1, 0#1 = 1#0 = 1#1 = 0.

Original entry on oeis.org

1, 0, 2, 1, 12, 14, 100, 180, 990, 2310, 10920, 30030, 129612, 396576, 1620168, 5318841, 21029580, 72364578, 280735884, 997356360, 3828988020, 13905563100, 53108050320, 195875639310, 746569720572, 2784329809344, 10610782107800
Offset: 1

Views

Author

Jeppe Stig Nielsen, Jun 24 2000

Keywords

Comments

Operation # can be interpreted as NOT OR. The ratio a(n)/A000108(n-1) converges to sqrt(3)/3. Thanks to Soren Galatius Smith.
Essentially second column of A112519. - Paul Barry, Sep 09 2005

Crossrefs

Programs

  • Magma
    [(1/n)*(&+[(-1)^j*Binomial(2*j,j)*Binomial(2*n-j-2,n-j-1): j in [0..n-1]]): n in [1..30]]; // G. C. Greubel, Jan 12 2022
  • Mathematica
    CoefficientList[ Series[1/2 + 1/2(3 - 2(1 - 4x)^(1/2))^(1/2), {x, 0, 27}], x] (* Robert G. Wilson v, May 04 2004 *)
  • PARI
    {a(n)=if(n<1,0,polcoeff(serreverse(x - 2*x^3 - x^4 +x*O(x^n)),n))} /* Paul D. Hanna, Apr 05 2012 */
    
  • Sage
    [(1/n)*sum( (-1)^j*binomial(2*j,j)*binomial(2*n-j-2,n-j-1) for j in (0..n-1) ) for n in (1..30)] # G. C. Greubel, Jan 12 2022
    

Formula

G.f.: (1/2)*(1 + sqrt(3 - 2*sqrt(1 - 4*x))).
The g.f. Z is also given by Z(x) = C(x)U(xC(x)), where U(x) = C(-x) and C is the g.f. of the Catalan numbers. - D. G. Rogers, Oct 20 2005
a(n) = Sum_{j=0..n} (1/n)*(-1)^(j-1)*C(2*n-j-1, n-j)*C(2*(j-1), j-1). - Paul Barry, Sep 09 2005, corrected by Peter Bala, Aug 19 2014
G.f. A(x) satisfies: A(x) = x + 2*A(x)^3 + A(x)^4; thus, A(x - 2*x^3 - x^4) = x. - Paul D. Hanna, Apr 05 2012
G.f. A(x) satisfies: x = Sum_{n>=1} 1/(1+A(x))^(2*n-1) * Product_{k=1..n} (1 - 1/(1+A(x))^k). - Paul D. Hanna, Apr 05 2012
Conjecture: 500*n*(n-1)*a(n) +100*(n-1)*(5*n -12)*a(n-1) +20*(25*n^2 -463*n +846)*a(n-2) +(-140161*n^2 +966559*n -1637508)*a(n-3) +2*(250*n^2 -26509*n +105084)*a(n-4) +98036*(4*n -19)*(4*n -21)*a(n-5) = 0. - R. J. Mathar, Nov 26 2012
a(n) ~ 4^(n-1) / (sqrt(3*Pi) * n^(3/2)). - Vaclav Kotesovec, Sep 03 2019
Showing 1-1 of 1 results.