cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 30 results. Next

A130564 Member k=5 of a family of generalized Catalan numbers.

Original entry on oeis.org

1, 5, 40, 385, 4095, 46376, 548340, 6690585, 83615350, 1064887395, 13770292256, 180320238280, 2386316821325, 31864803599700, 428798445360120, 5809228810425801, 79168272296871450, 1084567603590147950
Offset: 1

Views

Author

Wolfdieter Lang, Jul 13 2007

Keywords

Comments

The generalized Catalan numbers C(k,n):= binomial(k*n+1,n)/(k*n+1) become for negative k=-|k|, with |k|>=2, ((-1)^(n-1))*binomial((|k|+1)*n-2,n)/(|k|*n-1), n>=0.
The family c(k,n):=binomial((k+1)*n-2,n)/(k*n-1), n>=1, has the members A000108, A006013, A006632, A118971 for k=1,2,3,4, respectively (but the offset there is 0).
The members of the C(k,n) family for positive k are: A000012 (powers of 1), A000108, A001764, A002293, A002294, A002295, A002296, A007556, A062994, for k=1..9.

References

  • Ronald L. Graham, Donald E. Knuth and Oren Patashnik, Concrete Mathematics, Addison-Wesley, Reading, MA, 2nd ed. 1994, pp. 200, 363.

Crossrefs

Programs

  • Mathematica
    Rest@ CoefficientList[InverseSeries[Series[y (1 - y)^5, {y, 0, 18}], x], x] (* Michael De Vlieger, Oct 13 2019 *)

Formula

a(n) = binomial((k+1)*n-2,n)/(k*n-1), with k=5.
G.f.: inverse series of y*(1-y)^5.
a(n) = (5/6)*binomial(6*n,n)/(6*n-1). [Bruno Berselli, Jan 17 2014]
From Wolfdieter Lang, Feb 06 2020: (Start)
G.f.: (5/6)*(1 - hypergeom([-1, 1, 2, 3, 4]/6, [1, 2, 3, 4]/5,(6^6/5^5)*x)).
E.g.f.: (5/6)*(1 - hypergeom([-1, 1, 2, 3, 4]/6, [1, 2, 3, 4, 5]/5,(6^6/5^5)*x)). (End)
D-finite with recurrence 5*n*(5*n-4)*(5*n-3)*(5*n-2)*(5*n-1)*a(n) -72*(6*n-7)*(3*n-1)*(2*n-1)*(3*n-2)*(6*n-5)*a(n-1)=0. - R. J. Mathar, May 07 2021

A234466 a(n) = 7*binomial(8*n+7,n)/(8*n+7).

Original entry on oeis.org

1, 7, 77, 1015, 14763, 228459, 3689595, 61474519, 1048927880, 18236463245, 321899509386, 5753527081211, 103922382296180, 1893943017506925, 34783258504651434, 643111366544129175, 11960812088346090200, 223614812152492437432, 4200107505573406222425
Offset: 0

Views

Author

Tim Fulford, Dec 26 2013

Keywords

Comments

Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), this is the case p=8, r=7.

Crossrefs

Programs

  • Magma
    [7*Binomial(8*n+7, n)/(8*n+7): n in [0..30]]; // Vincenzo Librandi, Dec 26 2013
  • Mathematica
    Table[7 Binomial[8 n + 7, n]/(8 n + 7), {n, 0, 40}] (* Vincenzo Librandi, Dec 26 2013 *)
  • PARI
    a(n) = 7*binomial(8*n+7,n)/(8*n+7);
    
  • PARI
    {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(8/7))^7+x*O(x^n)); polcoeff(B, n)}
    

Formula

G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, where p=8, r=7.
E.g.f.: hypergeom([7, 9, 10, 11, 12, 13, 14]/8, [8, 9, 10, 11, 12, 13, 14]/7, (8^8/7^7)*x). Cf.: Ilya Gutkovskiy in A118971. - Wolfdieter Lang, Feb 06 2020
D-finite with recurrence: +7*(7*n+4)*(7*n+1)*(7*n+5)*(7*n+2)*(7*n+6)*(7*n+3)*(n+1)*a(n) -128*(8*n+3)*(4*n+3)*(8*n+1)*(2*n+1)*(8*n-1)*(4*n+1)*(8*n+5)*a(n-1)=0. - R. J. Mathar, Feb 21 2020
From Wolfdieter Lang, Feb 15 2024: (Start)
a(n) = binomial(8*n + 6, n+1)/(7*n + 6). This is instance k = 7 of c(k, n+1) given in a comment in A130564.
The compositional inverse of y*(1 - y)^7 is x*G(x), where G is the o.g.f.. That is, G(x)*(1 - x*G(x))^7 = 1. This is equivalent to the formula of the first line above with B = G. Take A = B^(1/7) then A*(1 - x*B) = 1 or B*(1 - x*B)^7 = 1.
The o.g.f is G(x) = 8F7([7..14]/8, [8..14]/7; (8^8/7^7)*x) = (7/(8*x))*(1 - 7F6([-1,1,2,3,4,5,6]/8, [1,2,3,4,5,6]/7; (8^8/7^7)*x)). See the e.g.f. above.(End)

A234513 8*binomial(9*n+8,n)/(9*n+8).

Original entry on oeis.org

1, 8, 100, 1496, 24682, 433160, 7932196, 149846840, 2898753715, 57135036024, 1143315429776, 23166186450680, 474347963242860, 9799792252101016, 204022381037886400, 4276098770070159096, 90151561242584838605, 1910564646571462338800
Offset: 0

Views

Author

Tim Fulford, Dec 27 2013

Keywords

Comments

Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), where p=9, r=8.

Crossrefs

Programs

  • Magma
    [8*Binomial(9*n+8, n)/(9*n+8): n in [0..30]]; // Vincenzo Librandi, Dec 28 2013
  • Mathematica
    Table[8 Binomial[9 n + 8, n]/(9 n + 8), {n, 0, 30}] (* Vincenzo Librandi, Dec 28 2013 *)
  • PARI
    a(n) = 8*binomial(9*n+8,n)/(9*n+8);
    
  • PARI
    {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(9/8))^8+x*O(x^n)); polcoeff(B, n)}
    

Formula

G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, where p=9, r=8.
From Wolfdieter Lang, Feb 06 2020: (Start)
G.f.: hypergeom([8, 9, ..., 16]/9, [9, 10, ..., 16]/8, (9^9/8^8)*x).
E,g,f.: hypergeom([8, 10, 11, ..., 16]/9, [9, 10,..., 16]/8, (9^9/8^8)*x). Cf. Ilya Gutkovsky in A118971. (End)
D-finite with recurrence 128*(8*n+3)*(4*n+3)*(8*n+1)*(2*n+1)*(8*n+7)*(4*n+1)*(8*n+5)*(n+1)*a(n) -81*(9*n+2)*(9*n+4)*(3*n+2)*(9*n-1)*(9*n+1)*(3*n+1)*(9*n+5)*(9*n+7)*a(n-1)=0. - R. J. Mathar, Aug 01 2022
From Wolfdieter Lang, Feb 15 2024: (Start)
a(n) = binomial(9*n+7, n+1)/(8*n+7), which is instance k = 8 of c(k, n+1) given in A130564.
The g.f. given above, and called B in the first line above, satisfies B(x)*(1 - x*B(x))^8 = 1. For the analog proof of the equivalence see A234466. x*B(x) is the compositional inverse of y*(1 - y)^8.
Another formula for the g.f. is B(x) = (8/(9*x))*(1 - 8F7([-1,1,2,3,4,5,6.7]/9, [1,2,3,4,5,6.7]/8; (9^9/8^8)*x)). (End)

A234573 a(n) = 9*binomial(10*n+9,n)/(10*n+9).

Original entry on oeis.org

1, 9, 126, 2109, 38916, 763686, 15636192, 330237765, 7141879503, 157366449604, 3520256293710, 79735912636302, 1825080422272800, 42148579533938784, 980892581545169496, 22980848343194476245, 541581608172776494554, 12829884648994115426295, 305349921559399354716430
Offset: 0

Views

Author

Tim Fulford, Dec 28 2013

Keywords

Comments

Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), where p=10, r=9.

Crossrefs

Programs

  • Magma
    [9*Binomial(10*n+9, n)/(10*n+9): n in [0..30]];
  • Mathematica
    Table[9 Binomial[10 n + 9, n]/(10 n + 9), {n, 0, 30}]
  • PARI
    a(n) = 9*binomial(10*n+9,n)/(10*n+9);
    
  • PARI
    {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(10/9))^9+x*O(x^n)); polcoeff(B, n)}
    

Formula

G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, where p=10, r=9.
From Wolfdieter Lang, Feb 06 2020: (Start)
G.f.: hypergeom([9, 10, ..., 18]/10, [10, 11, ..., 18]/9, (10^10/9^9)*x).
E.g.f.: hypergeom([9, 11, 12, ..., 18]/10, [10, 11, ..., 18]/9, (10^10/9^9) * x). Cf. Ilya Gutkovsky in A118971. (End)
a(n) = binomial(10*n + 8 , n+1)/(9*n + 8) which is instance k = 9 of c(k, n+1) given in a comment in A130564. x*B(x), with the above given g.f. B(x), is the compositional inverse of y*(1 - y)^9, hence B(x)*(1 - x*B(x))^9 = 1. For another formula for B(x) involving the hypergeometric function 9F8 see the analog formula in A234513. - Wolfdieter Lang, Feb 15 2024

A130565 Member k=6 of a family of generalized Catalan numbers.

Original entry on oeis.org

1, 6, 57, 650, 8184, 109668, 1533939, 22137570, 327203085, 4928006512, 75357373305, 1166880131820, 18259838103852, 288308609783760, 4587430875645660, 73484989079268690, 1184104656043939071
Offset: 1

Views

Author

Wolfdieter Lang, Jul 13 2007

Keywords

Comments

The generalized Catalan numbers C(k,n):= binomial(k*n+1,n)/(k*n+1) become for negative k=-|k|, with |k|>=2, ((-1)^(n-1))*binomial((|k|+1)*n-2,n)/(|k|*n-1), n>=0.
For the members of the family C(k,n), k=2..9, see A130564.
The family c(k,n):=binomial((k+1)*n-2,n)/(k*n-1), n>=1, has the members A006013, A006632, A118971,for k=2,3,4 respectively (but the offset there is 0) and A130564 for k=5.

Crossrefs

Cf. k=5 member A130564. A006013, A006632, A118971,

Programs

  • Mathematica
    Table[Binomial[7n-2,n]/(6n-1),{n,20}] (* Harvey P. Dale, Feb 25 2013 *)

Formula

a(n) = binomial((k+1)*n-2,n)/(k*n-1), with k=6.
G.f.: inverse series of y*(1-y)^6.
a(n) = (6/7)*binomial(7*n,n)/(7*n-1). [Bruno Berselli, Jan 17 2014]
From Wolfdieter Lang, Feb 06 2020: (Start)
G.f.: (6/7)*(1 - hypergeom([-1, 1, 2, 3, 4, 5]/7, [1, 2, 3, 4, 5]/6, (7^7/6^6)*x)).
E.g.f.: (6/7)*(1 - hypergeom([-1, 1, 2, 3, 4, 5]/7, [1, 2, 3, 4, 5, 6]/6, (7^7/6^6)*x)). (End)

A233668 a(n) = 6*binomial(5*n + 6,n)/(5*n + 6).

Original entry on oeis.org

1, 6, 45, 380, 3450, 32886, 324632, 3290040, 34034715, 357919100, 3815041230, 41124015036, 447534498320, 4910258796240, 54257308779600, 603260892430960, 6744185681876505, 75764901779438850, 854867886710698755, 9683529727259434200
Offset: 0

Views

Author

Tim Fulford, Dec 14 2013

Keywords

Comments

Fuss-Catalan sequence is a(n,p,r) = r*binomial(n*p + r, n)/(n*p + r); this is the case p = 5, r = 6.

References

  • C. H. Pah, M. R. Wahiddin, Combinatorial Interpretation of Raney Numbers and Tree Enumerations, Open Journal of Discrete Mathematics, 2015, 5, 1-9; http://www.scirp.org/journal/ojdm; http://dx.doi.org/10.4236/ojdm.2015.51001

Crossrefs

Cf. A000245 (k = 3), A006629 (k = 4), A196678 (k = 5), A233743 (k = 7), A233835 (k = 8), A234467 (k = 9), A232265 (k = 10), A229963 (k = 11).

Programs

  • Magma
    [6*Binomial(5*n+6,n)/(5*n+6): n in [0..30]];
  • Mathematica
    Table[6 Binomial[5 n + 6, n]/(5 n + 6), {n, 0, 30}]
  • PARI
    a(n) = 6*binomial(5*n+6,n)/(5*n+6);
    
  • PARI
    {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(5/6))^6+x*O(x^n)); polcoeff(B, n)}
    

Formula

G.f. satisfies: A(x) = {1 + x*A(x)^(p/r)}^r, here p = 5, r = 6.
From _Peter Bala, Oct 16 2015: (Start)
O.g.f. A(x) = 1/x * series reversion (x*C(-x)^6), where C(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. for the Catalan numbers A000108. See cross-references for other Fuss-Catalan sequences with o.g.f. 1/x * series reversion (x*C(-x)^k), k = 3 through 11.
A(x)^(1/6) is the o.g.f. for A002294. (End)
D-finite with recurrence 8*n*(4*n+5)*(2*n+3)*(4*n+3)*a(n) -5*(5*n+1)*(5*n+2)*(5*n+3)*(5*n+4)*a(n-1)=0. - R. J. Mathar, Nov 22 2024

A251575 E.g.f.: exp(5*x*G(x)^4) / G(x)^4 where G(x) = 1 + x*G(x)^5 is the g.f. of A002294.

Original entry on oeis.org

1, 1, 5, 65, 1505, 51505, 2354725, 135258625, 9373203425, 761486105825, 71001537157925, 7475144493546625, 877222642396170625, 113551974107296500625, 16073867927431440597125, 2470217878902686107522625, 409596824402404827033730625, 72890993386914239524503090625, 13857243751694786173837746653125
Offset: 0

Views

Author

Paul D. Hanna, Dec 06 2014

Keywords

Examples

			E.g.f.: A(x) = 1 + x + 5*x^2/2! + 65*x^3/3! + 1505*x^4/4! + 51505*x^5/5! +...
such that A(x) = exp(5*x*G(x)^4) / G(x)^4
where G(x) = 1 + x*G(x)^5 is the g.f. of A002294:
G(x) = 1 + x + 5*x^2 + 35*x^3 + 285*x^4 + 2530*x^5 + 23751*x^6 +...
Note that
A'(x) = exp(5*x*G(x)^4) = 1 + 5*x + 65*x^2/2! + 1505*x^3/3! + 51505*x^4/4! +...
LOGARITHMIC DERIVATIVE.
The logarithm of the e.g.f. begins:
log(A(x)) = x + 4*x^2/2 + 26*x^3/3 + 204*x^4/4 + 1771*x^5/5 +...
and so A'(x)/A(x) = G(x)^4.
TABLE OF POWERS OF E.G.F.
Form a table of coefficients of x^k/k! in A(x)^n as follows.
n=1: [1, 1,  5,   65,  1505,   51505,  2354725,  135258625, ...];
n=2: [1, 2, 12,  160,  3680,  124560,  5637760,  321147200, ...];
n=3: [1, 3, 21,  291,  6705,  225315, 10112805,  571694355, ...];
n=4: [1, 4, 32,  464, 10784,  361120, 16101760,  904145920, ...];
n=5: [1, 5, 45,  685, 16145,  540645, 23993725, 1339552925, ...];
n=6: [1, 6, 60,  960, 23040,  774000, 34254720, 1903435200, ...];
n=7: [1, 7, 77, 1295, 31745, 1072855, 47438125, 2626525615, ...];
n=8: [1, 8, 96, 1696, 42560, 1450560, 64195840, 3545600000, ...]; ...
in which the main diagonal begins (see A251585):
[1, 2, 21, 464, 16145, 774000, 47438125, 3545600000, ...]
and is given by the formula:
[x^n/n!] A(x)^(n+1) = 5^(n-3) * (n+1)^(n-4) * (16*n^3 + 87*n^2 + 172*n + 125) for n>=0.
		

Crossrefs

Programs

  • Mathematica
    Flatten[{1,1,Table[Sum[5^k * n!/k! * Binomial[5*n-k-5, n-k] * (k-1)/(n-1),{k,0,n}],{n,2,20}]}] (* Vaclav Kotesovec, Dec 07 2014 *)
  • PARI
    {a(n) = local(G=1);for(i=1,n,G=1+x*G^5 +x*O(x^n)); n!*polcoeff(exp(5*x*G^4)/G^4, n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n) = if(n==0||n==1, 1, sum(k=0, n, 5^k * n!/k! * binomial(5*n-k-5,n-k) * (k-1)/(n-1) ))}
    for(n=0, 20, print1(a(n), ", "))

Formula

Let G(x) = 1 + x*G(x)^5 be the g.f. of A002294, then the e.g.f. A(x) of this sequence satisfies:
(1) A'(x)/A(x) = G(x)^4.
(2) A'(x) = exp(5*x*G(x)^4).
(3) A(x) = exp( Integral G(x)^4 dx ).
(4) A(x) = exp( Sum_{n>=1} A118971(n-1)*x^n/n ), where A118971(n-1) = binomial(5*n-2,n)/(4*n-1).
(5) A(x) = F(x/A(x)) where F(x) is the e.g.f. of A251585.
(6) A(x) = Sum_{n>=0} A251585(n)*(x/A(x))^n/n! and
(7) [x^n/n!] A(x)^(n+1) = (n+1)*A251585(n)
where A251585(n) = 5^(n-3) * (n+1)^(n-5) * (16*n^3 + 87*n^2 + 172*n + 125).
a(n) = Sum_{k=0..n} 5^k * n!/k! * binomial(5*n-k-5, n-k) * (k-1)/(n-1) for n>1.
Recurrence: 8*(2*n-3)*(4*n-7)*(4*n-5)*(25*n^3 - 210*n^2 + 598*n - 581)*a(n) = 5*(15625*n^7 - 240625*n^6 + 1592500*n^5 - 5883125*n^4 + 13135350*n^3 - 17781015*n^2 + 13566657*n - 4523904)*a(n-1) - 3125*(25*n^3 - 135*n^2 + 253*n - 168)*a(n-2). - Vaclav Kotesovec, Dec 07 2014
a(n) ~ 5^(5*n-11/2) * n^(n-2) / (2^(8*n-9) * exp(n-1)). - Vaclav Kotesovec, Dec 07 2014

A118968 a(4n+k) = (k+1)*binomial(5n+k,n)/(4n+k+1), k=0..3.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 3, 4, 5, 11, 18, 26, 35, 80, 136, 204, 285, 665, 1155, 1771, 2530, 5980, 10530, 16380, 23751, 56637, 100688, 158224, 231880, 556512, 996336, 1577532, 2330445, 5620485, 10116873, 16112057, 23950355, 57985070, 104819165, 167710664, 250543370, 608462470
Offset: 0

Views

Author

Paul Barry, May 07 2006

Keywords

Comments

Row sums of Riordan array (1,x(1-x^4))^(-1).

Crossrefs

Programs

  • Mathematica
    Table[k=Mod[n,4];(k+1)Binomial[(5n-k)/4,(n-k)/4]/(n+1),{n,0,40}] (* Robert A. Russell, Mar 14 2024 *)
  • PARI
    {a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=1+x*A^2*subst(A,x,-x)*subst(A,x,I*x)*subst(A,x,-I*x));polcoeff(A,n)} \\ Paul D. Hanna, Jun 04 2012
    
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=1+x*A*exp(sum(m=1,n\4,4*polcoeff(log(A+x*O(x^n)),4*m)*x^(4*m))+x*O(x^n)));polcoeff(A,n)} \\ Paul D. Hanna, Jun 04 2012
    
  • PARI
    apr(n, p, r) = r*binomial(n*p+r, n)/(n*p+r);
    a(n) = apr(n\4, 5, n%4+1); \\ Seiichi Manyama, Jul 20 2025

Formula

a(4n) = A002294(n), a(4n+1) = A118969(n), a(4n+2) = A118970(n), a(4n+3) = A118971(n).
G.f. satisfies: A(x) = 1 + x*A(x)^2*A(-x)*A(I*x)*A(-I*x). - Paul D. Hanna, Jun 04 2012
G.f. satisfies: A(x) = 1 + x*A(x)*G(x^4) where G(x) = 1 + x*G(x)^5 is the g.f. of A002294. - Paul D. Hanna, Jun 04 2012
From Robert A. Russell, Mar 14 2024: (Start)
G.f.: G(z^4) + z*G(z^4)^2 + z^2*G(z^4)^3 + z^3*G(z^4)^4, where G(z) = 1 + z*G(z)^5 is the g.f. for A002294.
G.f.: E(1)(t*E(5)(t^4)) (fifth entry in Table 3), where E(d)(t) is defined in formula 3 of Hering link. (End)
a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/4)} a(4*k) * a(n-1-4*k). - Seiichi Manyama, Jul 07 2025

A163455 a(n) = binomial(5*n-1,n).

Original entry on oeis.org

1, 4, 36, 364, 3876, 42504, 475020, 5379616, 61523748, 708930508, 8217822536, 95722852680, 1119487075980, 13136858812224, 154603005527328, 1824010149372864, 21566576904406820, 255485622301674660, 3031718514166879020, 36030431772522503316
Offset: 0

Views

Author

Zak Seidov, Jul 28 2009

Keywords

Comments

Also, number of terms in A163142 with n zeros in binary representation.
All terms >= 4 are divisible by 4.

Examples

			a(1)=4 because there are 4 terms in A163142 with 1 zero in binary representation {23,27,29,30}_10 ={10111,11011,11101,11110}_2
a(2)=36 because there are 36 terms in A163142 with 2 zeros in binary representation: {639,703,735,751,759,763,765,766,831,863,879,887,891,893,894,927,943,951,955,957,958,975,983,987,989,990,999,1003,1005,1006,1011,1013,1014,1017,1018,1020}_10={1001111111,...,1111111100}_2
a(3)=364 terms in A163142 from 18431 to 32760 with 3 zeros in binary representation 18431_10=100011111111111_2 and 32760_10=111111111111000_2
a(4)=3876 terms in A163142 from 557055 to 1048560 with 4 zeros in binary representation, etc.
		

Crossrefs

Programs

  • Magma
    [Binomial(5*n-1, n): n in [0..30]]; // Vincenzo Librandi, Aug 07 2014
    
  • Mathematica
    Table[(5*n-1)!/ n!/(4*n-1)!,{n,20}]
    Table[Binomial[5 n - 1, n], {n, 0, 20}] (* Vincenzo Librandi, Aug 07 2014 *)
  • Maxima
    B(x):=sum(binomial(5*n-2,n-1)/(n)*x^n,n,1,30);
    taylor(x*diff(B(x),x,1)/B(x),x,0,10);
    
  • PARI
    a(n) = binomial(5*n-1,n); \\ Michel Marcus, Oct 06 2015

Formula

a(n) = (5n-1)!/(n!(4n-1)!).
G.f.: A(x)=x*B'(x)/B(x), where B(x)/x is g.f. for A118971. Also a(n) = Sum_{k=0..n} (binomial(n-1,n-k)*binomial(4*n,k)). - Vladimir Kruchinin, Oct 06 2015
From Peter Bala, Feb 14 2024: (Start)
a(n) = (-1)^n * binomial(-4*n, n).
a(n) = hypergeom([1 - 4*n, -n], [1], 1).
A(x) satisfies A(x/(1 + x)^5) = 1/(1 - 4*x). (End)
From Peter Bala, Jun 05 2024: (Start)
Right-hand side of the identity Sum_{k = 0..n} binomial(n+k-1, k)*binomial(4*n-k-1, n-k) = binomial(5*n-1, n).
a(n) = (3/4)*binomial(4*n, 3*n)*hypergeom([n, -n], [1 - 4*n], 1) for n >= 1. (End)
From Karol A. Penson Jan 20 2025: (Start)
G.f.: 4*z*Hypergeometric5F4([1, 6/5, 7/5, 8/5, 9/5], [5/4, 3/2, 7/4, 2], (3125*z)/256) + 1.
G.f. A(z) satisfies: z*(1250*A^3 - 250*A^2 + 25*A - 1) + (-3125*z + 256)*A^4 + (3125*z - 256)*A^5 = 0. (End)
G.f.: 1/(5-4*g) where g = 1+x*g^5 is the g.f. of A002294. - Seiichi Manyama, Aug 17 2025

Extensions

Entry revised by N. J. A. Sloane, Dec 07 2015

A371486 G.f. A(x) satisfies A(x) = 1 / (1 - x*A(x) / (1-x))^4.

Original entry on oeis.org

1, 4, 30, 260, 2465, 24796, 260008, 2811216, 31117240, 350890260, 4016744586, 46556054072, 545273713228, 6443442857024, 76727957438650, 919796418086076, 11091249210406816, 134439965189940176, 1637160457090585016, 20019920157735604796, 245733987135102838131
Offset: 0

Views

Author

Seiichi Manyama, Mar 25 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(n-1, n-k)*binomial(5*k+3, k)/(k+1));

Formula

a(n) = Sum_{k=0..n} binomial(n-1,n-k) * binomial(5*k+3,k)/(k+1).
G.f.: A(x) = B(x/(1-x)), where B(x) = (1/x) * Series_Reversion( x*(1-x)^4 ).
G.f.: A(x) = B(x)^4 where B(x) is the g.f. of A349332.
Showing 1-10 of 30 results. Next