cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A118971 a(n) = binomial(5*n+3,n)/(n+1).

Original entry on oeis.org

1, 4, 26, 204, 1771, 16380, 158224, 1577532, 16112057, 167710664, 1772645420, 18974357220, 205263418941, 2240623268512, 24648785802336, 272994644359580, 3041495503591365, 34064252968167180, 383302465665133014
Offset: 0

Views

Author

Paul Barry, May 07 2006

Keywords

Comments

A quadrisection of A118968.
For n >= 1, a(n-1) is the number of lattice paths from (0,0) to (4n,n) using only the steps (1,0) and (0,1) and which stay strictly below the line y = x/4 except at the path's endpoints. - Lucas A. Brown, Aug 21 2020
This is instance k = 4 of the family {c(k, n+1)}A130564.%20-%20_Wolfdieter%20Lang">{n>=0} given in a comment in A130564. - _Wolfdieter Lang, Feb 04 2024

Crossrefs

Cf. A000108, A006013, A006632, A130564, A130565, A234466, A234513, A234573, A235340 (members of the same family).

Programs

  • Mathematica
    Table[4*Binomial[5n+3,n]/(4n+4),{n,0,30}] (* Harvey P. Dale, Apr 09 2012 *)

Formula

G.f.: If the inverse series of y*(1-y)^4 is G(x) then A(x)=G(x)/x.
D-finite with recurrence 8*(4*n+1)*(2*n+1)*(4*n+3)*(n+1)*a(n) -5*(5*n+1)*(5*n+2)*(5*n+3)*(5*n-1)*a(n-1)=0. - R. J. Mathar, Nov 26 2012
a(n) = (4/5)*binomial(5*(n+1),n+1)/(5*(n+1)-1). - Bruno Berselli, Jan 17 2014
E.g.f.: 4F4(4/5,6/5,7/5,8/5; 5/4,3/2,7/4,2; 3125*x/256). - Ilya Gutkovskiy, Jan 23 2018
G.f.: 5F4([4,5,6,7,8]/5, [5,6,7,8]/4; (5^5/4^4)*x) = (4/(5*x))*(1 - 4F3([-1,1,2,3]/5, [1,2,3]/4; (5^5/4^4)*x)). - Wolfdieter Lang, Feb 15 2024

A118970 a(n) = 3*binomial(5n+2,n)/(4n+3).

Original entry on oeis.org

1, 3, 18, 136, 1155, 10530, 100688, 996336, 10116873, 104819165, 1103722620, 11777187240, 127067830773, 1383914371728, 15194457001440, 167996704221280, 1868870731122405, 20903064321375315, 234927317665726686
Offset: 0

Views

Author

Paul Barry, May 07 2006

Keywords

Comments

A quadrisection of A118968.
Convolved with A118969 (1, 2, 11, 80, 665, ...) = A002294: (1, 5, 35, 285, 2530, ...) - Gary W. Adamson, Nov 07 2011

References

  • R. K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section B33.

Crossrefs

Programs

  • Maple
    ogf := series(RootOf(A = 1 + x * A^5,A)^3, x=0, 30); # Mark van Hoeij, Apr 22 2013
  • Mathematica
    Array[3 Binomial[5 # + 2, #]/(4 # + 3) &, 19, 0] (* Michael De Vlieger, May 30 2018 *)
    CoefficientList[Series[HypergeometricPFQ[{3/5,4/5,6/5,7/5},{1,5/4,3/2,7/4},(5^5/4^4)x],{x,0,18}],x]Range[0,18]! (* Stefano Spezia, Oct 01 2024 *)
  • PARI
    a(n)=3*binomial(5*n+2,n)/(4*n+3); \\ Joerg Arndt, Apr 23 2013

Formula

G.f.: F^3 where F is the g.f. of A002294. - Mark van Hoeij, Apr 23 2013
8*n*(4*n+1)*(2*n+1)*(4*n+3)*a(n) -5*(5*n+1)*(5*n+2)*(5*n-2)*(5*n-1)*a(n-1)=0. - R. J. Mathar, Dec 02 2014
From Peter Bala, Oct 08 2015: (Start)
O.g.f. A(x) = (1/x) * series reversion ( x/C(x)^3 ), where C(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. for the Catalan numbers A000108.
(1/3)*x*A'(x)/A(x) = x + 9*x^2 + 91*x^3 + 969*x^4 + ... is the o.g.f. for A163456. (End)
E.g.f.: hypergeom([3/5, 4/5, 6/5, 7/5], [1, 5/4, 3/2, 7/4], (5^5/4^4)*x). - Stefano Spezia, Oct 01 2024

A118969 a(n) = 2*binomial(5*n+1,n)/(4*n+2).

Original entry on oeis.org

1, 2, 11, 80, 665, 5980, 56637, 556512, 5620485, 57985070, 608462470, 6474009360, 69682358811, 757366074080, 8300675584120, 91634565938880, 1018002755977245, 11372548404732930, 127677890035721025, 1439777493407492640
Offset: 0

Views

Author

Paul Barry, May 07 2006

Keywords

Comments

A quadrisection of A118968.
If y = x + 2*x^3 + x^5, the series reversion is x = y - 2*y^3 + 11*y^5 - 80*y^7 + 665*y^9 - ... - R. J. Mathar, Sep 29 2012

Examples

			a(3) = 80 = sum of top row terms in M^n = (35 + 35 + 9 + 1).
		

Crossrefs

Programs

  • Magma
    [2*Binomial(5*n+1,n)/(4*n+2): n in [0..20]]; // Vincenzo Librandi, Aug 12 2011
    
  • Mathematica
    Table[2*Binomial[5n+1,n]/(4n+2),{n,0,20}] (* Harvey P. Dale, Aug 21 2011 *)
  • PARI
    a(n)=2*binomial(5*n+1,n)/(4*n+2); \\ Joerg Arndt, Apr 20 2013

Formula

From Gary W. Adamson, Aug 11 2011: (Start)
a(n) is sum of top row terms in M^n, where M is an infinite square production matrix with the tetrahedral series in each column (A000292), as follows:
1, 1, 0, 0, 0, 0, ...
4, 1, 1, 0, 0, 0, ...
10, 10, 4, 1, 0, 0, ...
20, 20, 10, 4, 1, 0, ...
35, 35, 20, 10, 4, 1, ...
... (End)
G.f.: hypergeom([1/5, 2/5, 3/5, 4/5],[1/2, 3/4, 5/4], 3125*x/256)^2. - Mark van Hoeij, Apr 19 2013
a(n) = 2*binomial(5n+1,n-1)/n for n>0, a(0)=1. - Bruno Berselli, Jan 19 2014
D-finite with recurrence 8*n*(4*n+1)*(2*n+1)*(4*n-1)*a(n) - 5*(5*n+1)*(5*n-3)*(5*n-2)*(5*n-1)*a(n-1) = 0. - R. J. Mathar, Oct 10 2014
G.f. A(x) satisfies: A(x) = 1 / (1 - x * A(x)^2)^2. - Ilya Gutkovskiy, Nov 13 2021

A124753 a(3n+k) = (k+1)*binomial(4n+k, n)/(3n+k+1), where k is n reduced mod 3.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 4, 9, 15, 22, 52, 91, 140, 340, 612, 969, 2394, 4389, 7084, 17710, 32890, 53820, 135720, 254475, 420732, 1068012, 2017356, 3362260, 8579560, 16301164, 27343888, 70068713, 133767543, 225568798, 580034052, 1111731933, 1882933364, 4855986044, 9338434700
Offset: 0

Views

Author

Paul Barry, Nov 06 2006

Keywords

Comments

Row sums of Riordan array (1,x(1-x^3))^(-1). Also row sums of A124752.
a(n) is the number of ordered trees (A000108) with n vertices in which every non-leaf non-root vertex has exactly two children that are leaves. For example, a(4) counts the 2 trees
\ /
| and \|/ . - David Callan, Aug 22 2014

Crossrefs

Cf. A084080, A002293, A069271 (trisection), A006632 (trisection).

Programs

  • Maple
    A124753 := proc(n)
        local k,np;
        k := modp(n,3) ;
        np := floor(n/3) ;
        (k+1)*binomial(np+n,np)/(n+1) ;
    end proc:
    seq(A124753(n),n=0..40) ; # R. J. Mathar, Oct 30 2014
  • Mathematica
    a[n_] := Module[{q, k}, {q, k} = QuotientRemainder[n, 3]; (k+1)*Binomial[4q + k, q]/(3q + k + 1)];
    Table[a[n], {n, 0, 34}] (* Jean-François Alcover, Nov 20 2017 *)
  • PARI
    {a(n)=local(A=1+x); for(i=1,n,A=1+x*A*exp(sum(m=1,n\3,3*polcoeff(log(A+x*O(x^n)),3*m)*x^(3*m))+x*O(x^n))); polcoeff(A,n)} \\ Paul D. Hanna, Jun 04 2012
    
  • PARI
    apr(n, p, r) = r*binomial(n*p+r, n)/(n*p+r);
    a(n) = apr(n\3, 4, n%3+1); \\ Seiichi Manyama, Jul 20 2025

Formula

a(3n) = A002293(n), a(3n+1) = A069271(n), a(3n+2) = A006632(n+1).
a(n) = ((mod(n,3)+1)*C(4*floor(n/3)+mod(n,3), floor(n/3))/ (3*floor(n/3) + 1 + mod(n, 3))). - Paul Barry, Dec 14 2006
G.f. satisfies: A(x) = 1 + x*A(x)^2*A(w*x)*A(w^2*x), where w = exp(2*Pi*I/3). - Paul D. Hanna, Jun 04 2012
G.f. satisfies: A(x) = 1 + x*A(x)*G(x^3) where G(x) = 1 + x*G(x)^4 is the g.f. of A002293. - Paul D. Hanna, Jun 04 2012
Conjecture: +8019*n*(n-1)*(n+1)*a(n) +17496*n*(n-1)*(n-3)*a(n-1) +2592*(3*n-5)*(n-1)*(3*n-16)*a(n-2) +216*(-224*n^3+48*n^2+3926*n-6331)*a(n-3) +576*(-288*n^3+2448*n^2-6558*n+5443)*a(n-4) +768*(-288*n^3+3600*n^2-14878*n+20375)*a(n-5) -8192*(4*n-23)*(2*n-11)*(4*n-21)*a(n-6)=0. - R. J. Mathar, Oct 30 2014
a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/3)} a(3*k) * a(n-1-3*k). - Seiichi Manyama, Jul 07 2025

A386380 a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/6)} a(6*k) * a(n-1-6*k).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 15, 24, 34, 45, 57, 70, 154, 253, 368, 500, 650, 819, 1827, 3045, 4495, 6200, 8184, 10472, 23562, 39627, 59052, 82251, 109668, 141778, 320866, 543004, 814506, 1142295, 1533939, 1997688, 4540200, 7718340, 11633440, 16398200, 22137570
Offset: 0

Views

Author

Seiichi Manyama, Jul 20 2025

Keywords

Crossrefs

Programs

  • Maple
    A386380 := proc(n)
        option remember ;
        if n = 0 then
            1;
        else
            add(procname(6*k)*procname(n-1-6*k),k=0..floor((n-1)/6)) ;
        end if;
    end proc:
    seq(A386380(n),n=0..80) ; # R. J. Mathar, Jul 30 2025
  • PARI
    apr(n, p, r) = r*binomial(n*p+r, n)/(n*p+r);
    a(n) = apr(n\6, 7, n%6+1);

Formula

For k=0..5, a(6*n+k) = (k+1) * binomial(7*n+k+1,n)/(7*n+k+1).
G.f. A(x) satisfies A(x) = 1/(1 - x * Product_{k=0..5} A(w^k*x)), where w = exp(Pi*i/3).

A386379 a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/5)} a(5*k) * a(n-1-5*k).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 13, 21, 30, 40, 51, 114, 190, 280, 385, 506, 1150, 1950, 2925, 4095, 5481, 12586, 21576, 32736, 46376, 62832, 145299, 250971, 383838, 548340, 749398, 1741844, 3025308, 4654320, 6690585, 9203634, 21475146, 37456650, 57887550
Offset: 0

Views

Author

Seiichi Manyama, Jul 20 2025

Keywords

Crossrefs

Programs

  • PARI
    apr(n, p, r) = r*binomial(n*p+r, n)/(n*p+r);
    a(n) = apr(n\5, 6, n%5+1);

Formula

For k=0..4, a(5*n+k) = (k+1) * binomial(6*n+k+1,n)/(6*n+k+1).
G.f. A(x) satisfies A(x) = 1/(1 - x * Product_{k=0..4} A(w^k*x)), where w = exp(2*Pi*i/5).

A385725 E.g.f. A(x) satisfies A(x) = exp( x*(A(x) + A(i*x) + A(-x) + A(-i*x))/4 ), where i is the imaginary unit.

Original entry on oeis.org

1, 1, 1, 1, 1, 6, 31, 106, 281, 3160, 29701, 176056, 768241, 12702704, 173361371, 1466276176, 8937060081, 195180709248, 3494232292681, 38426220716416, 301057954180801, 8174141246647552, 181144607099402871, 2452803139819922176, 23494461553739152201, 762800754226165963776
Offset: 0

Views

Author

Seiichi Manyama, Jul 08 2025

Keywords

Crossrefs

Formula

a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/4)} (4*k+1) * binomial(n-1,4*k) * a(4*k) * a(n-1-4*k).

A386203 a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/4)} binomial(n-1,4*k) * a(4*k) * a(n-1-4*k).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 7, 22, 57, 184, 949, 4984, 21649, 99728, 659443, 4777648, 29500593, 179618176, 1441372201, 13153104256, 105727977601, 808208897792, 7631709900607, 83311277669632, 825548919414057, 7638849184574464, 83126488334117149, 1050853652511099904
Offset: 0

Views

Author

Seiichi Manyama, Jul 14 2025

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, (i-1)\4, binomial(i-1, 4*j)*v[4*j+1]*v[i-4*j])); v;

Formula

E.g.f. A(x) satisfies A'(x) = A(x) * (A(x) + A(i*x) + A(-x) + A(-i*x))/4, where i is the imaginary unit.

A386396 a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/7)} a(7*k) * a(n-1-7*k).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 17, 27, 38, 50, 63, 77, 92, 200, 325, 468, 630, 812, 1015, 1240, 2728, 4488, 6545, 8925, 11655, 14763, 18278, 40508, 67158, 98728, 135751, 178794, 228459, 285384, 635628, 1059380, 1566040, 2165800, 2869685, 3689595, 4638348
Offset: 0

Views

Author

Seiichi Manyama, Jul 20 2025

Keywords

Crossrefs

Programs

  • PARI
    apr(n, p, r) = r*binomial(n*p+r, n)/(n*p+r);
    a(n) = apr(n\7, 8, n%7+1);

Formula

For k=0..6, a(7*n+k) = (k+1) * binomial(8*n+k+1,n)/(8*n+k+1).
G.f. A(x) satisfies A(x) = 1/(1 - x * Product_{k=0..6} A(w^k*x)), where w = exp(2*Pi*i/7).

A214374 G.f. satisfies: A(x) = 1 + x*A(x)^3*A(-x)*A(I*x)*A(-I*x).

Original entry on oeis.org

1, 1, 2, 5, 14, 77, 272, 954, 3390, 20942, 81886, 313216, 1200192, 7744531, 31604104, 125795060, 500225166, 3302458490, 13797942732, 56190743623, 228422293810, 1529418005565, 6486104136768, 26809045163856, 110586420610480, 747542548312112, 3203080302079898
Offset: 0

Views

Author

Paul D. Hanna, Jul 14 2012

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 77*x^5 + 272*x^6 + 954*x^7 +...
Related expansions:
A(x)^2 = 1 + 2*x + 5*x^2 + 14*x^3 + 42*x^4 + 202*x^5 + 779*x^6 + 2900*x^7 +...
A(x)^3 = 1 + 3*x + 9*x^2 + 28*x^3 + 90*x^4 + 402*x^5 + 1631*x^6 + 6372*x^7 +...
A(x)*A(-x) = 1 + 3*x^2 + 22*x^4 + 421*x^6 + 5386*x^8 + 127595*x^10 +...
A(x)*A(-x)*A(I*x)*A(-I*x) = 1 + 35*x^4 + 8730*x^8 + 3122301*x^12 + 1308019950*x^16 + 599139933987*x^20 + 290661820794000*x^24 +...
		

Crossrefs

Cf. A118968.

Programs

  • PARI
    {a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=1+x*A^3*subst(A,x,-x)*subst(A,x,I*x)*subst(A,x,-I*x));polcoeff(A,n)}
    for(n=0,30,print1(a(n),", "))
Showing 1-10 of 10 results.