A118968
a(4n+k) = (k+1)*binomial(5n+k,n)/(4n+k+1), k=0..3.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 3, 4, 5, 11, 18, 26, 35, 80, 136, 204, 285, 665, 1155, 1771, 2530, 5980, 10530, 16380, 23751, 56637, 100688, 158224, 231880, 556512, 996336, 1577532, 2330445, 5620485, 10116873, 16112057, 23950355, 57985070, 104819165, 167710664, 250543370, 608462470
Offset: 0
-
Table[k=Mod[n,4];(k+1)Binomial[(5n-k)/4,(n-k)/4]/(n+1),{n,0,40}] (* Robert A. Russell, Mar 14 2024 *)
-
{a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=1+x*A^2*subst(A,x,-x)*subst(A,x,I*x)*subst(A,x,-I*x));polcoeff(A,n)} \\ Paul D. Hanna, Jun 04 2012
-
{a(n)=local(A=1+x);for(i=1,n,A=1+x*A*exp(sum(m=1,n\4,4*polcoeff(log(A+x*O(x^n)),4*m)*x^(4*m))+x*O(x^n)));polcoeff(A,n)} \\ Paul D. Hanna, Jun 04 2012
-
apr(n, p, r) = r*binomial(n*p+r, n)/(n*p+r);
a(n) = apr(n\4, 5, n%4+1); \\ Seiichi Manyama, Jul 20 2025
A386380
a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/6)} a(6*k) * a(n-1-6*k).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 15, 24, 34, 45, 57, 70, 154, 253, 368, 500, 650, 819, 1827, 3045, 4495, 6200, 8184, 10472, 23562, 39627, 59052, 82251, 109668, 141778, 320866, 543004, 814506, 1142295, 1533939, 1997688, 4540200, 7718340, 11633440, 16398200, 22137570
Offset: 0
-
A386380 := proc(n)
option remember ;
if n = 0 then
1;
else
add(procname(6*k)*procname(n-1-6*k),k=0..floor((n-1)/6)) ;
end if;
end proc:
seq(A386380(n),n=0..80) ; # R. J. Mathar, Jul 30 2025
-
apr(n, p, r) = r*binomial(n*p+r, n)/(n*p+r);
a(n) = apr(n\6, 7, n%6+1);
A235536
a(n) = binomial(8*n, 2*n) / (6*n + 1).
Original entry on oeis.org
1, 4, 140, 7084, 420732, 27343888, 1882933364, 134993766600, 9969937491420, 753310723010608, 57956002331347120, 4524678117939182220, 357557785658996609700, 28545588568201512137904, 2298872717007844035521848, 186533392975795702301759056
Offset: 0
Cf. similar sequences generated by binomial((l+k)*n,k*n)/(l*n+1), where l is divisible by all the factors of k:
A000108 (l=1, k=1),
A001764 (l=2, k=1),
A002293 (l=3, k=1),
A002294 (l=4, k=1),
A002295 (l=5, k=1),
A002296 (l=6, k=1),
A007556 (l=7, k=1),
A062994 (l=8, k=1),
A059968 (l=9, k=1),
A230388 (l=10, k=1),
A048990 (l=2, k=2),
A235534 (l=4, k=2), this sequence (l=6, k=2),
A187357 (l=3, k=3),
A235535 (l=6, k=3).
-
l:=6; k:=2; [Binomial((l+k)*n,k*n)/(l*n+1): n in [0..20]]; /* where l is divisible by all the prime factors of k */
-
Table[Binomial[8 n, 2 n]/(6 n + 1), {n, 0, 20}]
A124752
Inverse of number triangle A124749.
Original entry on oeis.org
1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 2, 2, 2, 2, 1, 0, 0, 0, 3, 3, 3, 3, 2, 1, 0, 0, 0, 4, 4, 4, 4, 3, 2, 1, 0, 0, 0, 9, 9, 9, 9, 7, 5, 3, 1
Offset: 0
Triangle begins
1,
0, 1,
0, 0, 1,
0, 0, 0, 1,
0, 0, 0, 1, 1,
0, 0, 0, 1, 1, 1,
0, 0, 0, 1, 1, 1, 1,
0, 0, 0, 2, 2, 2, 2, 1,
0, 0, 0, 3, 3, 3, 3, 2, 1,
0, 0, 0, 4, 4, 4, 4, 3, 2, 1,
0, 0, 0, 9, 9, 9, 9, 7, 5, 3, 1
A385691
E.g.f. A(x) satisfies A(x) = exp( x*(A(x) + A(w*x) + A(w^2*x))/3 ), where w = exp(2*Pi*i/3).
Original entry on oeis.org
1, 1, 1, 1, 5, 21, 61, 568, 4257, 20917, 286451, 3099141, 21555865, 390273898, 5524889553, 49790422501, 1121734897937, 19631020478229, 217441607213557, 5862333450708460, 122222268766006641, 1606671304363320805, 50443794604147639487, 1220712011020970521461
Offset: 0
-
terms = 24; w = Exp[2*Pi*I/3]; A[] = 1; Do[A[x] = Exp[x*(A[x] + A[w*x] + A[w^2*x])/3] + O[x]^terms // Normal, terms]; Simplify[CoefficientList[A[x], x]Range[0,terms-1]!] (* Stefano Spezia, Jul 07 2025 *)
A386379
a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/5)} a(5*k) * a(n-1-5*k).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 13, 21, 30, 40, 51, 114, 190, 280, 385, 506, 1150, 1950, 2925, 4095, 5481, 12586, 21576, 32736, 46376, 62832, 145299, 250971, 383838, 548340, 749398, 1741844, 3025308, 4654320, 6690585, 9203634, 21475146, 37456650, 57887550
Offset: 0
-
apr(n, p, r) = r*binomial(n*p+r, n)/(n*p+r);
a(n) = apr(n\5, 6, n%5+1);
A084080
Length of lists created by n substitutions k -> Range[k+1,1,-3] starting with {1}, counting down from k+1 to 1 step -3.
Original entry on oeis.org
1, 1, 1, 2, 3, 4, 9, 15, 22, 52, 91, 140, 340, 612, 969, 2394, 4389, 7084, 17710, 32890, 53820, 135720, 254475, 420732, 1068012, 2017356, 3362260, 8579560, 16301164, 27343888, 70068713
Offset: 0
{1}, {2}, {3}, {4, 1}, {5, 2, 2}, {6, 3, 3, 3}, {7, 4, 1, 4, 1, 4, 1, 4, 1}
-
Length/@Flatten/@NestList[ # /. k_Integer:>Range[k+1, 1, -3]&, {1}, 21]
A385699
G.f. A(x) satisfies A(x) = 1/( 1 - x*(A(x) + A(-x))*(A(x) + A(w*x) + A(w^2*x))/6 ), where w = exp(2*Pi*i/3).
Original entry on oeis.org
1, 1, 1, 2, 5, 13, 24, 88, 181, 523, 1616, 4891, 10540, 42009, 94953, 294102, 957259, 3028320, 6864540, 28208447, 66180997, 211105506, 703497178, 2273009790, 5283518340, 22058432677, 52795736539, 171169636087, 578132050147, 1891182035377, 4462525373212
Offset: 0
A386202
a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/3)} binomial(n-1,3*k) * a(3*k) * a(n-1-3*k).
Original entry on oeis.org
1, 1, 1, 1, 2, 6, 16, 52, 234, 1018, 4724, 27864, 166816, 1018096, 7421220, 56215420, 427276280, 3714931512, 33908654224, 309043657936, 3126424467816, 33317327728936, 354276443249552, 4093007897140128, 49813497858533344, 605442506092221760, 7871720463184084560
Offset: 0
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, (i-1)\3, binomial(i-1, 3*j)*v[3*j+1]*v[i-3*j])); v;
A386396
a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/7)} a(7*k) * a(n-1-7*k).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 17, 27, 38, 50, 63, 77, 92, 200, 325, 468, 630, 812, 1015, 1240, 2728, 4488, 6545, 8925, 11655, 14763, 18278, 40508, 67158, 98728, 135751, 178794, 228459, 285384, 635628, 1059380, 1566040, 2165800, 2869685, 3689595, 4638348
Offset: 0
-
apr(n, p, r) = r*binomial(n*p+r, n)/(n*p+r);
a(n) = apr(n\7, 8, n%7+1);
Showing 1-10 of 10 results.
Comments