cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A385725 E.g.f. A(x) satisfies A(x) = exp( x*(A(x) + A(i*x) + A(-x) + A(-i*x))/4 ), where i is the imaginary unit.

Original entry on oeis.org

1, 1, 1, 1, 1, 6, 31, 106, 281, 3160, 29701, 176056, 768241, 12702704, 173361371, 1466276176, 8937060081, 195180709248, 3494232292681, 38426220716416, 301057954180801, 8174141246647552, 181144607099402871, 2452803139819922176, 23494461553739152201, 762800754226165963776
Offset: 0

Views

Author

Seiichi Manyama, Jul 08 2025

Keywords

Crossrefs

Formula

a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/4)} (4*k+1) * binomial(n-1,4*k) * a(4*k) * a(n-1-4*k).

A386202 a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/3)} binomial(n-1,3*k) * a(3*k) * a(n-1-3*k).

Original entry on oeis.org

1, 1, 1, 1, 2, 6, 16, 52, 234, 1018, 4724, 27864, 166816, 1018096, 7421220, 56215420, 427276280, 3714931512, 33908654224, 309043657936, 3126424467816, 33317327728936, 354276443249552, 4093007897140128, 49813497858533344, 605442506092221760, 7871720463184084560
Offset: 0

Views

Author

Seiichi Manyama, Jul 14 2025

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, (i-1)\3, binomial(i-1, 3*j)*v[3*j+1]*v[i-3*j])); v;

Formula

E.g.f. A(x) satisfies A'(x) = A(x) * (A(x) + A(w*x) + A(w^2*x))/3, where w = exp(2*Pi*i/3).
Showing 1-2 of 2 results.