cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A143546 G.f. A(x) satisfies A(x) = 1 + x*A(x)^3*A(-x)^2.

Original entry on oeis.org

1, 1, 1, 3, 5, 18, 35, 136, 285, 1155, 2530, 10530, 23751, 100688, 231880, 996336, 2330445, 10116873, 23950355, 104819165, 250543370, 1103722620, 2658968130, 11777187240, 28558343775, 127067830773, 309831575760, 1383914371728, 3390416787880, 15194457001440
Offset: 0

Views

Author

Paul D. Hanna, Aug 23 2008

Keywords

Comments

Number of achiral polyominoes composed of n hexagonal cells of the hyperbolic regular tiling with Schläfli symbol {6,oo}. A stereographic projection of the {6,oo} tiling on the Poincaré disk can be obtained via the Christensson link. - Robert A. Russell, Jan 23 2024
Number of achiral noncrossing partitions composed of n blocks of size 5. - Andrew Howroyd, Feb 08 2024

Examples

			G.f.: A(x) = 1 + x + x^2 + 3*x^3 + 5*x^4 + 18*x^5 + 35*x^6 + 136*x^7 + ...
A(x) = 1 + x*A(x)^3*A(-x)^2 where
A(x)^3 = 1 + 3x + 6x^2 + 16x^3 + 39x^4 + 114x^5 + 304x^6 + 936x^7 + ...
A(-x)^2 = 1 - 2x + 3x^2 - 8x^3 + 17x^4 - 52x^5 + 125x^6 - 408x^7 + ...
Also, A(x) = G(x^2) + x*G(x^2)^3 where
G(x) = 1 + x + 5*x^2 + 35*x^3 + 285*x^4 + 2530*x^5 + 23751*x^6 + ...
G(x)^3 = 1 + 3*x + 18*x^2 + 136*x^3 + 1155*x^4 + 10530*x^5 + ...
		

Crossrefs

Column k=5 of A369929 and k=6 of A370062.
Cf. A118970.
Polyominoes: A221184(n-1) (oriented), A004127 (unoriented), A369473 (chiral), A002294 (rooted), A047749 {4,oo}, A369472 {5,oo}.

Programs

  • Mathematica
    terms = 28;
    A[] = 1; Do[A[x] = 1 + x A[x]^3 A[-x]^2 + O[x]^terms // Normal, {terms}];
    CoefficientList[A[x], x] (* Jean-François Alcover, Jul 24 2018 *)
    p=6; Table[If[EvenQ[n],Binomial[(p-1)n/2,n/2]/((p-2)n/2+1),If[OddQ[p],(p-1)Binomial[(p-1)n/2-1,(n-1)/2]/((p-2)n+1),p Binomial[(p-1)n/2-1/2,(n-1)/2]/((p-2)n+2)]],{n,0,35}] (* Robert A. Russell, Jan 23 2024 *)
  • PARI
    {a(n)=my(A=1+O(x^(n+1)));for(i=0,n,A=1+x*A^3*subst(A^2,x,-x));polcoef(A,n)}
    
  • PARI
    {a(n)=my(m=n\2,p=2*(n%2)+1);binomial(5*m+p-1,m)*p/(4*m+p)}

Formula

G.f.: A(x) = G(x^2) + x*G(x^2)^3 where G(x) = 1 + x*G(x)^5 is the g.f. of A002294.
a(2n) = binomial(5*n,n)/(4*n+1); a(2n+1) = binomial(5*n+2,n)*3/(4*n+3).
From Robert A. Russell, Jan 23 2024: (Start)
a(n+2)/a(n) ~ 3125/256. a(2m+1)/a(2m) ~ 75/16; a(2m)/a(2m-1) ~ 125/48.
a(n) = 2*A004127(n) - A221184(n-1) = A221184(n-1) - 2*A369473(n) = A004127(n) - A369473(n). (End)
a(2m) = A002294(m) ~ (5^5/4^4)^m*sqrt(5/(2*Pi*(4*m)^3)). - Robert A. Russell, Jul 15 2024
From Seiichi Manyama, Jul 07 2025: (Start)
G.f. A(x) satisfies A(x)*A(-x) = (A(x) + A(-x))/2 = G(x^2), where G(x) = 1 + x*G(x)^5 is the g.f. of A002294.
a(0) = 1; a(n) = Sum_{i, j, k>=0 and i+2*j+2*k=n-1} a(i) * a(2*j) * a(2*k). (End)
a(0) = 1; a(n) = Sum_{i, j, k, l, m>=0 and i+j+k+l+m=n-1} (-1)^(i+j) * a(i) * a(j) * a(k) * a(l) * a(m). - Seiichi Manyama, Jul 08 2025

A234465 a(n) = 3*binomial(8*n+6,n)/(4*n+3).

Original entry on oeis.org

1, 6, 63, 812, 11655, 178794, 2869685, 47593176, 809172936, 14028048650, 247039158366, 4406956913268, 79470057050020, 1446283758823470, 26529603944225670, 489989612605050800, 9104498753815680600, 170073237411754811568, 3192081704235788729043
Offset: 0

Views

Author

Tim Fulford, Dec 26 2013

Keywords

Comments

Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), this is the case p = 8, r = 6.

Crossrefs

Programs

  • Magma
    [3*Binomial(8*n+6, n)/(4*n+3): n in [0..30]]; // Vincenzo Librandi, Dec 26 2013
  • Mathematica
    Table[3 Binomial[8 n + 6, n]/(4 n + 3), {n, 0, 40}] (* Vincenzo Librandi, Dec 26 2013 *)
  • PARI
    a(n) = 3*binomial(8*n+6,n)/(4*n+3);
    
  • PARI
    {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(4/3))^6+x*O(x^n)); polcoeff(B, n)}
    

Formula

G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, where p = 8, r = 6.
O.g.f. A(x) = 1/x * series reversion (x/C(x)^6), where C(x) is the o.g.f. for the Catalan numbers A000108. A(x)^(1/6) is the o.g.f. for A007556. - Peter Bala, Oct 14 2015
D-finite with recurrence: 7*n*(7*n+4)*(7*n+1)*(7*n+5)*(7*n+2)*(7*n+6)*(7*n+3)*a(n) -128*(8*n+3)*(4*n-1)*(8*n+1)*(2*n+1)*(8*n-1)*(4*n+1)*(8*n+5)*a(n-1)=0. - R. J. Mathar, Feb 21 2020

A212073 G.f. satisfies: A(x) = (1 + x*A(x)^(3/2))^4.

Original entry on oeis.org

1, 4, 30, 280, 2925, 32736, 383838, 4654320, 57887550, 734405100, 9467075926, 123648163392, 1632743088275, 21761329287600, 292362576381900, 3955219615609056, 53834425161872586, 736687428853685400, 10129401435828605700, 139876690363085200200
Offset: 0

Views

Author

Paul D. Hanna, Apr 29 2012

Keywords

Comments

Fuss-Catalan sequence is a(n,p,r) = r*binomial(p*n + r, n)/(p*n + r); this is the case p = 6, r = 4. The o.g.f. B(x) of the Fuss_catalan sequence a(n,p,r) satisfies B(x) = {1 + x*B(x)^(p/r)}^r. - Peter Bala, Oct 14 2015

Examples

			G.f.: A(x) = 1 + 4*x + 30*x^2 + 280*x^3 + 2925*x^4 + 32736*x^5 +...
Related expansions:
A(x)^(3/2) = 1 + 6*x + 51*x^2 + 506*x^3 + 5481*x^4 +...+ A002295(n+1)*x^n +...
A(x)^(1/4) = 1 + x + 6*x^2 + 51*x^3 + 506*x^4 +...+ A002295(n)*x^n +...
		

Crossrefs

Programs

  • Mathematica
    m = 20; A[_] = 0;
    Do[A[x_] = (1 + x*A[x]^(3/2))^4 + O[x]^m, {m}];
    CoefficientList[A[x], x] (* Jean-François Alcover, Oct 20 2019 *)
  • PARI
    {a(n)=binomial(6*n+4,n) * 4/(6*n+4)}
    for(n=0, 40, print1(a(n), ", "))
    
  • PARI
    {a(n)=local(A=1+4*x); for(i=1, n, A=(1+x*A^(3/2))^4+x*O(x^n)); polcoeff(A, n)}

Formula

a(n) = 4*binomial(6*n+4,n)/(6*n+4).
G.f. A(x) = G(x)^4 where G(x) = 1 + x*G(x)^6 is the g.f. of A002295.
O.g.f. A(x) = 1/x * series reversion (x/C(x)^4), where C(x) is the o.g.f. for the Catalan numbers A000108. - Peter Bala, Oct 14 2015
D-finite with recurrence 5*n*(5*n+1)*(5*n+2)*(5*n+3)*(5*n+4)*a(n) -72*(6*n-1)*(3*n-1)*(2*n+1)*(3*n+1)*(6*n+1)*a(n-1)=0. - R. J. Mathar, Nov 22 2024

A234571 a(n) = 4*binomial(10*n+8,n)/(5*n+4).

Original entry on oeis.org

1, 8, 108, 1776, 32430, 632016, 12876864, 270964320, 5843355957, 128462407840, 2868356980060, 64869895026144, 1482877843096650, 34207542810153216, 795318309360948240, 18617396126132233920, 438423206616057162258, 10379232525028947311160, 246878659984195222962220
Offset: 0

Views

Author

Tim Fulford, Dec 28 2013

Keywords

Comments

Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), where p = 10, r = 8.

Crossrefs

Programs

  • Magma
    [4*Binomial(10*n+8, n)/(5*n+4): n in [0..30]];
  • Mathematica
    Table[4 Binomial[10 n + 8, n]/(5 n + 4), {n, 0, 30}]
  • PARI
    a(n) = 4*binomial(10*n+8,n)/(5*n+4);
    
  • PARI
    {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(5/4))^8+x*O(x^n)); polcoeff(B, n)}
    

Formula

G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, where p = 10, r = 8.
O.g.f. A(x) = 1/x * series reversion (x/C(x)^8), where C(x) is the o.g.f. for the Catalan numbers A000108. A(x)^(1/8) is the o.g.f. for A059968. - Peter Bala, Oct 14 2015

A234510 a(n) = 7*binomial(9*n+7,n)/(9*n+7).

Original entry on oeis.org

1, 7, 84, 1232, 20090, 349860, 6371764, 119877472, 2311664355, 45448324110, 907580289616, 18358110017520, 375353605696524, 7744997102466932, 161070300819384000, 3372697621463787456, 71046594621639707245, 1504569659175026591805
Offset: 0

Views

Author

Tim Fulford, Dec 27 2013

Keywords

Comments

Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), where p = 9, r = 7.

Crossrefs

Programs

  • Magma
    [7*Binomial(9*n+7, n)/(9*n+7): n in [0..30]]; // Vincenzo Librandi, Dec 27 2013
  • Mathematica
    Table[7 Binomial[9 n + 7, n]/(9 n + 7), {n, 0, 40}] (* Vincenzo Librandi, Dec 27 2013 *)
  • PARI
    a(n) = 7*binomial(9*n+7,n)/(9*n+7);
    
  • PARI
    {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(9/7))^7+x*O(x^n)); polcoeff(B, n)}
    

Formula

G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, where p = 9, r = 7.
O.g.f. A(x) = 1/x * series reversion (x/C(x)^7), where C(x) is the o.g.f. for the Catalan numbers A000108. A(x)^(1/7) is the o.g.f. for A062994. - Peter Bala, Oct 14 2015

A233834 a(n) = 5*binomial(7*n+5,n)/(7*n+5).

Original entry on oeis.org

1, 5, 45, 500, 6200, 82251, 1142295, 16398200, 241379325, 3623534200, 55262073757, 853814730600, 13335836817420, 210225027967325, 3340362288091500, 53443628421286320, 860246972339613855, 13921016318025200505, 226352372251889455000, 3696160728052814340000
Offset: 0

Views

Author

Tim Fulford, Dec 16 2013

Keywords

Comments

Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), this is the case p = 7, r = 5.

Crossrefs

Programs

  • Magma
    [5*Binomial(7*n+5, n)/(7*n+5): n in [0..30]];
  • Mathematica
    Table[5 Binomial[7 n + 5, n]/(7 n + 5), {n, 0, 30}]
  • PARI
    a(n) = 5*binomial(7*n+5,n)/(7*n+5);
    
  • PARI
    {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(7/5))^5+x*O(x^n)); polcoeff(B, n)}
    

Formula

G.f. satisfies: A(x) = {1 + x*A(x)^(p/r)}^r, where p = 7, r = 5.
O.g.f. A(x) = 1/x * series reversion (x/C(x)^5), where C(x) is the o.g.f. for the Catalan numbers A000108. A(x)^(1/5) is the o.g.f. for A002296. - Peter Bala, Oct 14 2015

A118968 a(4n+k) = (k+1)*binomial(5n+k,n)/(4n+k+1), k=0..3.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 3, 4, 5, 11, 18, 26, 35, 80, 136, 204, 285, 665, 1155, 1771, 2530, 5980, 10530, 16380, 23751, 56637, 100688, 158224, 231880, 556512, 996336, 1577532, 2330445, 5620485, 10116873, 16112057, 23950355, 57985070, 104819165, 167710664, 250543370, 608462470
Offset: 0

Views

Author

Paul Barry, May 07 2006

Keywords

Comments

Row sums of Riordan array (1,x(1-x^4))^(-1).

Crossrefs

Programs

  • Mathematica
    Table[k=Mod[n,4];(k+1)Binomial[(5n-k)/4,(n-k)/4]/(n+1),{n,0,40}] (* Robert A. Russell, Mar 14 2024 *)
  • PARI
    {a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=1+x*A^2*subst(A,x,-x)*subst(A,x,I*x)*subst(A,x,-I*x));polcoeff(A,n)} \\ Paul D. Hanna, Jun 04 2012
    
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=1+x*A*exp(sum(m=1,n\4,4*polcoeff(log(A+x*O(x^n)),4*m)*x^(4*m))+x*O(x^n)));polcoeff(A,n)} \\ Paul D. Hanna, Jun 04 2012
    
  • PARI
    apr(n, p, r) = r*binomial(n*p+r, n)/(n*p+r);
    a(n) = apr(n\4, 5, n%4+1); \\ Seiichi Manyama, Jul 20 2025

Formula

a(4n) = A002294(n), a(4n+1) = A118969(n), a(4n+2) = A118970(n), a(4n+3) = A118971(n).
G.f. satisfies: A(x) = 1 + x*A(x)^2*A(-x)*A(I*x)*A(-I*x). - Paul D. Hanna, Jun 04 2012
G.f. satisfies: A(x) = 1 + x*A(x)*G(x^4) where G(x) = 1 + x*G(x)^5 is the g.f. of A002294. - Paul D. Hanna, Jun 04 2012
From Robert A. Russell, Mar 14 2024: (Start)
G.f.: G(z^4) + z*G(z^4)^2 + z^2*G(z^4)^3 + z^3*G(z^4)^4, where G(z) = 1 + z*G(z)^5 is the g.f. for A002294.
G.f.: E(1)(t*E(5)(t^4)) (fifth entry in Table 3), where E(d)(t) is defined in formula 3 of Hering link. (End)
a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/4)} a(4*k) * a(n-1-4*k). - Seiichi Manyama, Jul 07 2025

A235339 a(n) = 9*binomial(11*n+9,n)/(11*n+9).

Original entry on oeis.org

1, 9, 135, 2460, 49725, 1072197, 24163146, 562311720, 13409091540, 325949656825, 8046743477058, 201198155083200, 5084704634041305, 129673310477725350, 3332952595603387800, 86250038091202771344, 2245329811618166111985
Offset: 0

Views

Author

Tim Fulford, Jan 06 2014

Keywords

Comments

Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), this is the case p = 11, r = 9.

Crossrefs

Programs

  • Magma
    [9*Binomial(11*n+9, n)/(11*n+9): n in [0..30]];
  • Mathematica
    Table[9 Binomial[11 n + 9, n]/(11 n + 9), {n, 0, 30}]
  • PARI
    a(n) = 9*binomial(11*n+9,n)/(11*n+9);
    
  • PARI
    {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(11/9))^9+x*O(x^n)); polcoeff(B, n)}
    

Formula

G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, here p = 11, r = 9.
O.g.f. A(x) = 1/x * series reversion (x/C(x)^9), where C(x) is the o.g.f. for the Catalan numbers A000108. A(x)^(1/9) is the o.g.f. for A230388. - Peter Bala, Oct 14 2015

A163456 a(n) = binomial(5*n,n)/5.

Original entry on oeis.org

1, 9, 91, 969, 10626, 118755, 1344904, 15380937, 177232627, 2054455634, 23930713170, 279871768995, 3284214703056, 38650751381832, 456002537343216, 5391644226101705, 63871405575418665, 757929628541719755
Offset: 1

Views

Author

Zak Seidov, Jul 28 2009

Keywords

Comments

For prime p, a(p) == 1 (mod p). - Gary Detlefs, Aug 03 2013
In fact, a(p) == 1 (mod p^3) for prime p >= 5. See Mestrovic, Section 3. - Peter Bala, Oct 09 2015
From Robert Israel, Jul 12 2016: (Start)
a(p+1) == 5 (mod p) for primes p >= 5.
a(p^(k+1)) == a(p^k) mod p^(3(k+1)) for primes p >= 5. (End)

References

  • Ronald L. Graham, Donald E. Knuth, and Oren Patashnik, Concrete Mathematics, Addison-Wesley, Reading, 2nd ed. 1994.

Crossrefs

Programs

  • Maple
    seq(binomial(5*n,n)/5, n=1..20); # Robert Israel, Jul 12 2016
  • Mathematica
    Array[Binomial[5 #, #]/5 &, {18}] (* Michael De Vlieger, Oct 09 2015 *)
  • PARI
    a(n) = binomial(5*n,n)/5 \\ Altug Alkan, Oct 09 2015

Formula

a(n) = (5*n-1)!/(4*n!*(4*n-1)!) = A001449(n)/5 = A163455(n)/4.
a(n) = binomial(5*n,n)/5. - Gary Detlefs, Aug 03 2013
From Peter Bala, Oct 08 2015: (Start)
a(n) = (1/3)*[x^n] (C(x)^3)^n, where C(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. for the Catalan numbers A000108. Cf. A224274.
exp( 3*Sum_{n >= 1} a(n)*x^n/n ) = 1 + 3*x + 18*x^2 + 136*x^3 + ... is the o.g.f. for A118970. (End)
From Peter Bala,Jul 12 2016: (Start)
a(n) = 1/6*[x^n] (1 + x)/(1 - x)^(4*n + 1).
a(n) = 1/6*[x^n] ( 1/C(-x)^6 )^n. Cf. A227726. (End)
a(n) ~ 2^(-8*n-3/2)*5^(5*n-1/2)*n^(-1/2)/sqrt(Pi). - Ilya Gutkovskiy, Jul 12 2016
From Robert Israel, Jul 12 2016: (Start)
G.f.: x*hypergeom([1, 6/5, 7/5, 8/5, 9/5], [5/4, 3/2, 7/4, 2], (3125/256)*x).
a(n) = 5*(5*n-4)*(5*n-3)*(5*n-2)*(5*n-1)*a(n-1)/(8*n*(4*n-3)*(2*n-1)*(4*n-1)). (End)
O.g.f.: f(x)/(1 - 4*f(x)), where f(x) = series reversion (x/(1 + x)^5) = x + 5*x^2 + 35*x^3 + 285*x^4 + 2530*x^5 + ... is the o.g.f. of A002294 with the initial term omitted. Cf. A025174. - Peter Bala, Feb 03 2022
Right-hand side of the identities (1/4)*Sum_{k = 0..n} (-1)^(n+k)*C(x*n,n-k)*C((x+4)*n+k-1,k) = C(5*n,n)/5 and (1/5)*Sum_{k = 0..n} (-1)^k*C(x*n,n-k)*C((x-5)*n+k-1,k) = C(5*n,n)/5, both valid for n >= 1 and x arbitrary. - Peter Bala, Feb 28 2022
Right-hand side of the identity (1/4)*Sum_{k = 0..2*n} (-1)^k*binomial(6*n-k-1,2*n-k)*binomial(4*n+k-1,k) = binomial(5*n,n)/5, for n >= 1. - Peter Bala, Mar 09 2022
a(n) = (1/2)* [x*n] F(x)^(2*n) = [x^n] G(x)^n for n >= 1, where F(x) = Sum_{k >= 0} 1/(2*k + 1)*binomial(3*k,k)*x^k is the o.g.f. of A001764 and G(x) = Sum_{k >= 0} 1/(3*k + 1)*binomial(4*k,k)*x^k is the o.g.f. of A002293 (apply Concrete Mathematics, equation 5.60, p. 201). - Peter Bala, Apr 26 2023

Extensions

Renamed by Peter Bala, Oct 08 2015

A333095 a(n) = the n-th order Taylor polynomial (centered at 0) of c(x)^(3*n) evaluated at x = 1, where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. of the sequence of Catalan numbers A000108.

Original entry on oeis.org

1, 4, 34, 337, 3554, 38754, 431521, 4874377, 55639010, 640177033, 7412165034, 86256322816, 1007980394849, 11820510331777, 139032549536551, 1639506780365337, 19376785465043938, 229458302589724067, 2721958273545613513, 32339465512495259708, 384758834631081248554
Offset: 0

Views

Author

Peter Bala, Mar 15 2020

Keywords

Comments

The sequence satisfies the Gauss congruences: a(n*p^k) == a(n*p^(k-1)) ( mod p^k ) for all prime p and positive integers n and k.
We conjecture that the sequence satisfies the stronger supercongruences a(n*p^k) == a(n*p^(k-1)) ( mod p^(3*k) ) for prime p >= 5 and positive integers n and k. Examples of these congruences are given below.
More generally, for each integer m, we conjecture that the sequence a_m(n) := the n-th order Taylor polynomial of c(x)^(m*n) evaluated at x = 1 satisfies the same supercongruences. For cases see A099837 (m = -2), A100219 (m = -1), A000012 (m = 0), A333093 (m = 1), A333094 (m = 2), A333096 (m = 4), A333097 (m = 5).

Examples

			n-th order Taylor polynomial of c(x)^(3*n):
  n = 0: c(x)^0 = 1 + O(x)
  n = 1: c(x)^3 = 1 + 3*x + O(x^2)
  n = 2: c(x)^6 = 1 + 6*x + 27*x^2 + O(x^3)
  n = 3: c(x)^9 = 1 + 9*x + 54*x^2 + 273*x^3 + O(x^4)
  n = 4: c(x)^12 = 1 + 12*x + 90*x^2 + 544*x^3 + 2907*x^4 + O(x^5)
Setting x = 1 gives a(0) = 1, a(1) = 1 + 3 = 4, a(2) = 1 + 6 + 27 = 34, a(3) = 1 + 9 + 54 + 273 = 337 and a(4) = 1 + 12 + 90 + 544 + 2907 = 3554.
The triangle of coefficients of the n-th order Taylor polynomial of c(x)^n, n >= 0, in descending powers of x begins
                                              row sums
  n = 0 |    1                                    1
  n = 1 |    3       1                            4
  n = 2 |   27       6    1                      34
  n = 3 |  273      54    9   1                 337
  n = 4 | 2907     544   90  12   1            3554
   ...
This is a Riordan array belonging to the Hitting time subgroup of the Riordan group.
Examples of supercongruences:
a(13) - a(1) = 11820510331777 - 4 = 3*11*(13^3)*(43^2)*88177 == 0 ( mod 13^3 ).
a(3*7) - a(3) = 4583419703934987639046 - 337 = (3^2)*(7^4)*2441* 86893477573061 == 0 ( mod 7^3 ).
a(5^2) - a(5) = 93266278848727959965820004 - 38754 = 2*(5^7)*19* 31416009717466260199 == 0 ( mod 5^6 ).
		

Crossrefs

Programs

  • Maple
    seq(add(3*n/(3*n+k)*binomial(3*n+2*k-1,k), k = 0..n), n = 1..25);
    #alternative program
    c:= x → (1/2)*(1-sqrt(1-4*x))/x:
    G := (x,n) → series(c(x)^(3*n), x, 101):
    seq(add(coeff(G(x, n), x, n-k), k = 0..n), n = 0..25);
  • Mathematica
    Join[{1}, Table[3*Binomial[5*n-1, n] * HypergeometricPFQ[{1, -4*n, -n}, {1/2 - 5*n/2, 1 - 5*n/2}, 1/4]/4, {n, 1, 20}]] (* Vaclav Kotesovec, Mar 28 2020 *)

Formula

a(n) = Sum_{k = 0..n} 3*n/(3*n+k)*binomial(3*n+2*k-1, k) for n >= 1.
a(n) = [x^n] ( (1 + x)*c^3(x/(1 + x)) )^n.
O.g.f.: ( 1 + x*f'(x)/f(x) )/( 1 - x*f(x) ), where f(x) = 1 + 3*x + 18*x^2 + 136*x^3 + 1155*x^4 + ... = (1/x)*Revert( x/c^3(x) ) is the o.g.f. of A118970.
Row sums of the Riordan array ( 1 + x*f'(x)/f(x), f(x) ) belonging to the Hitting time subgroup of the Riordan group.
a(n) ~ 5^(5*n + 3/2) / (7 * 2^(8*n + 3/2) * sqrt(Pi*n)). - Vaclav Kotesovec, Mar 28 2020
a(n) = Sum_{k = 0..n} 3*n/(3*n+2*k)*binomial(3*n+2*k, k) for n >= 1. - Peter Bala, May 03 2024
Showing 1-10 of 12 results. Next