A234465
a(n) = 3*binomial(8*n+6,n)/(4*n+3).
Original entry on oeis.org
1, 6, 63, 812, 11655, 178794, 2869685, 47593176, 809172936, 14028048650, 247039158366, 4406956913268, 79470057050020, 1446283758823470, 26529603944225670, 489989612605050800, 9104498753815680600, 170073237411754811568, 3192081704235788729043
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- J-C. Aval, Multivariate Fuss-Catalan Numbers, arXiv:0711.0906v1, Discrete Math., 308 (2008), 4660-4669.
- Thomas A. Dowling, Catalan Numbers Chapter 7
- Wojciech Mlotkowski, Fuss-Catalan Numbers in Noncommutative Probability, Docum. Mathm. 15: 939-955.
- Wikipedia, Fuss-Catalan number
Cf.
A000108,
A007556,
A234461,
A234462,
A234463,
A234464,
A234466,
A234467,
A230390,
A007556,
A069271,
A118970,
A212073,
A233834,
A234510,
A234571,
A235339.
-
[3*Binomial(8*n+6, n)/(4*n+3): n in [0..30]]; // Vincenzo Librandi, Dec 26 2013
-
Table[3 Binomial[8 n + 6, n]/(4 n + 3), {n, 0, 40}] (* Vincenzo Librandi, Dec 26 2013 *)
-
a(n) = 3*binomial(8*n+6,n)/(4*n+3);
-
{a(n)=local(B=1); for(i=0, n, B=(1+x*B^(4/3))^6+x*O(x^n)); polcoeff(B, n)}
A212073
G.f. satisfies: A(x) = (1 + x*A(x)^(3/2))^4.
Original entry on oeis.org
1, 4, 30, 280, 2925, 32736, 383838, 4654320, 57887550, 734405100, 9467075926, 123648163392, 1632743088275, 21761329287600, 292362576381900, 3955219615609056, 53834425161872586, 736687428853685400, 10129401435828605700, 139876690363085200200
Offset: 0
G.f.: A(x) = 1 + 4*x + 30*x^2 + 280*x^3 + 2925*x^4 + 32736*x^5 +...
Related expansions:
A(x)^(3/2) = 1 + 6*x + 51*x^2 + 506*x^3 + 5481*x^4 +...+ A002295(n+1)*x^n +...
A(x)^(1/4) = 1 + x + 6*x^2 + 51*x^3 + 506*x^4 +...+ A002295(n)*x^n +...
Cf.
A002295,
A212071,
A212072,
A130564,
A069271,
A118970,
A233834,
A234465,
A234510,
A234571,
A235339.
-
m = 20; A[_] = 0;
Do[A[x_] = (1 + x*A[x]^(3/2))^4 + O[x]^m, {m}];
CoefficientList[A[x], x] (* Jean-François Alcover, Oct 20 2019 *)
-
{a(n)=binomial(6*n+4,n) * 4/(6*n+4)}
for(n=0, 40, print1(a(n), ", "))
-
{a(n)=local(A=1+4*x); for(i=1, n, A=(1+x*A^(3/2))^4+x*O(x^n)); polcoeff(A, n)}
A229963
a(n) = 11*binomial(10*n + 11, n)/(10*n + 11) .
Original entry on oeis.org
1, 11, 165, 2860, 53900, 1072797, 22188859, 472214600, 10273141395, 227440759700, 5107663394691, 116068178638776, 2664012608972000, 61668340817988135, 1438101958237201950, 33753007927148177360, 796704536753910327114
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- J-C. Aval, Multivariate Fuss-Catalan Numbers, arXiv:0711.0906 [math.CO], 2007.
- J-C. Aval, Multivariate Fuss-Catalan Numbers, Discrete Math., 308 (2008), 4660-4669.
- Thomas A. Dowling, Catalan Numbers Chapter 7
- Wojciech Mlotkowski, Fuss-Catalan Numbers in Noncommutative Probability, Docum. Mathm. 15: 939-955.
- Wikipedia, Fuss-Catalan number
-
[11*Binomial(10*n+11,n)/(10*n+11) : n in [0..20]]; // Vincenzo Librandi, Jan 10 2014
-
Table[11/(10 n + 11) Binomial[10 n + 11, n], {n, 0, 40}] (* Vincenzo Librandi, Jan 10 2014 *)
-
a(n) = 11*binomial(10*n+11,n)/(10*n+11);
-
{a(n)=local(B=1); for(i=0, n, B=(1+x*B^(10/11))^11+x*O(x^n)); polcoeff(B, n)}
A234510
a(n) = 7*binomial(9*n+7,n)/(9*n+7).
Original entry on oeis.org
1, 7, 84, 1232, 20090, 349860, 6371764, 119877472, 2311664355, 45448324110, 907580289616, 18358110017520, 375353605696524, 7744997102466932, 161070300819384000, 3372697621463787456, 71046594621639707245, 1504569659175026591805
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- J-C. Aval, Multivariate Fuss-Catalan Numbers, arXiv:0711.0906v1, Discrete Math., 308 (2008), 4660-4669.
- Thomas A. Dowling, Catalan Numbers Chapter 7
- Wojciech Mlotkowski, Fuss-Catalan Numbers in Noncommutative Probability, Docum. Mathm. 15: 939-955.
- Wikipedia, Fuss-Catalan number
Cf.
A000108,
A143554,
A234505,
A234506,
A234507,
A234508,
A234509,
A234513,
A232265,
A062994,
A069271,
A118970,
A212073,
A233834,
A234465,
A234571,
A235339.
-
[7*Binomial(9*n+7, n)/(9*n+7): n in [0..30]]; // Vincenzo Librandi, Dec 27 2013
-
Table[7 Binomial[9 n + 7, n]/(9 n + 7), {n, 0, 40}] (* Vincenzo Librandi, Dec 27 2013 *)
-
a(n) = 7*binomial(9*n+7,n)/(9*n+7);
-
{a(n)=local(B=1); for(i=0, n, B=(1+x*B^(9/7))^7+x*O(x^n)); polcoeff(B, n)}
A234573
a(n) = 9*binomial(10*n+9,n)/(10*n+9).
Original entry on oeis.org
1, 9, 126, 2109, 38916, 763686, 15636192, 330237765, 7141879503, 157366449604, 3520256293710, 79735912636302, 1825080422272800, 42148579533938784, 980892581545169496, 22980848343194476245, 541581608172776494554, 12829884648994115426295, 305349921559399354716430
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- J-C. Aval, Multivariate Fuss-Catalan Numbers, arXiv:0711.0906 [math.CO], 2007; Discrete Math., 308 (2008), 4660-4669.
- Thomas A. Dowling, Catalan Numbers Chapter 7.
- Elżbieta Liszewska and Wojciech Młotkowski, Some relatives of the Catalan sequence, arXiv:1907.10725 [math.CO], 2019.
- Wojciech Mlotkowski, Fuss-Catalan Numbers in Noncommutative Probability, Docum. Mathm. 15: 939-955.
- J. Sawada, J. Sears, A. Trautrim, and A. Williams, Demystifying our Grandparent's De Bruijn Sequences with Concatenation Trees, arXiv:2308.12405 [math.CO], 2023.
Cf.
A000108,
A059968,
A118971,
A130564,
A234513,
A234525,
A234526,
A234527,
A234528,
A234529,
A234570,
A234571,
A229963.
-
[9*Binomial(10*n+9, n)/(10*n+9): n in [0..30]];
-
Table[9 Binomial[10 n + 9, n]/(10 n + 9), {n, 0, 30}]
-
a(n) = 9*binomial(10*n+9,n)/(10*n+9);
-
{a(n)=local(B=1); for(i=0, n, B=(1+x*B^(10/9))^9+x*O(x^n)); polcoeff(B, n)}
A233834
a(n) = 5*binomial(7*n+5,n)/(7*n+5).
Original entry on oeis.org
1, 5, 45, 500, 6200, 82251, 1142295, 16398200, 241379325, 3623534200, 55262073757, 853814730600, 13335836817420, 210225027967325, 3340362288091500, 53443628421286320, 860246972339613855, 13921016318025200505, 226352372251889455000, 3696160728052814340000
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- J-C. Aval, Multivariate Fuss-Catalan Numbers, arXiv:0711.0906v1, Discrete Math., 308 (2008), 4660-4669.
- Thomas A. Dowling, Catalan Numbers Chapter 7
- Wojciech Mlotkowski, Fuss-Catalan Numbers in Noncommutative Probability, Docum. Mathm. 15: 939-955.
- Wikipedia, Fuss-Catalan number
Cf.
A000108,
A002296,
A233832,
A233833,
A143547,
A130565,
A233835,
A233907,
A233908,
A002296,
A069271,
A118970,
A212073,
A234465,
A234510,
A234571,
A235339.
-
[5*Binomial(7*n+5, n)/(7*n+5): n in [0..30]];
-
Table[5 Binomial[7 n + 5, n]/(7 n + 5), {n, 0, 30}]
-
a(n) = 5*binomial(7*n+5,n)/(7*n+5);
-
{a(n)=local(B=1); for(i=0, n, B=(1+x*B^(7/5))^5+x*O(x^n)); polcoeff(B, n)}
A234525
Binomial(10*n+2,n)/(5*n+1).
Original entry on oeis.org
1, 2, 21, 310, 5330, 99960, 1983049, 40919714, 869304150, 18885977110, 417663940540, 9371084905962, 212791660837756, 4880918206648000, 112925143575796455, 2632162372046272660, 61752662230350642670, 1457074607325333325524
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- J-C. Aval, Multivariate Fuss-Catalan Numbers, arXiv:0711.0906v1, Discrete Math., 308 (2008), 4660-4669.
- Thomas A. Dowling, Catalan Numbers Chapter 7
- Wojciech Mlotkowski, Fuss-Catalan Numbers in Noncommutative Probability, Docum. Mathm. 15: 939-955.
-
[Binomial(10*n+2, n)/(5*n+1): n in [0..30]]; // Vincenzo Librandi, Dec 27 2013
-
Table[Binomial[10 n + 2, n]/(5 n + 1), {n, 0, 40}] (* Vincenzo Librandi, Dec 27 2013 *)
-
a(n) = binomial(10*n+2,n)/(5*n+1);
-
{a(n)=local(B=1); for(i=0, n, B=(1+x*B^5)^2+x*O(x^n)); polcoeff(B, n)}
A234527
2*binomial(10*n+4,n)/(5*n+2).
Original entry on oeis.org
1, 4, 46, 704, 12341, 234260, 4685898, 97274544, 2075959314, 45262862788, 1003884090440, 22577660493024, 513698787408521, 11802947663348800, 273471432969603198, 6382396843322710560, 149902629054480517590, 3540479504783000035464
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- J-C. Aval, Multivariate Fuss-Catalan Numbers, arXiv:0711.0906v1, Discrete Math., 308 (2008), 4660-4669.
- Thomas A. Dowling, Catalan Numbers Chapter 7
- Wojciech Mlotkowski, Fuss-Catalan Numbers in Noncommutative Probability, Docum. Mathm. 15: 939-955.
-
[2*Binomial(10*n+4, n)/(5*n+2): n in [0..30]]; // Vincenzo Librandi, Dec 28 2013
-
Table[2 Binomial[10 n + 4, n]/(5 n + 2), {n, 0, 30}] (* Vincenzo Librandi, Dec 28 2013 *)
-
a(n) = 2*binomial(10*n+4,n)/(5*n+2);
-
{a(n)=local(B=1); for(i=0, n, B=(1+x*B^(5/2))^4+x*O(x^n)); polcoeff(B, n)}
A234526
3*binomial(10*n+3,n)/(10*n+3).
Original entry on oeis.org
1, 3, 33, 496, 8610, 162435, 3235501, 66959532, 1425658806, 31026962395, 687124547340, 15434728080408, 350818684083868, 8053515040969200, 186457795206547635, 4348790005989493960, 102080931442008205230, 2409777235191897422982
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- J-C. Aval, Multivariate Fuss-Catalan Numbers, arXiv:0711.0906v1, Discrete Math., 308 (2008), 4660-4669.
- Thomas A. Dowling, Catalan Numbers Chapter 7
- Wojciech Mlotkowski, Fuss-Catalan Numbers in Noncommutative Probability, Docum. Mathm. 15: 939-955.
-
[3*Binomial(10*n+3, n)/(10*n+3): n in [0..30]]; // Vincenzo Librandi, Dec 28 2013
-
Table[3 Binomial[10 n + 3, n]/(10 n + 3), {n, 0, 30}] (* Vincenzo Librandi, Dec 28 2013 *)
-
a(n) = 3*binomial(10*n+3,n)/(10*n+3);
-
{a(n)=local(B=1); for(i=0, n, B=(1+x*B^(10/3))^3+x*O(x^n)); polcoeff(B, n)}
A234528
Binomial(10*n+5,n)/(2*n+1).
Original entry on oeis.org
1, 5, 60, 935, 16555, 316251, 6353760, 132321990, 2830853610, 61841702065, 1373736123760, 30935736733230, 704631080073635, 16204866668942000, 375762274309378440, 8775795659568727020, 206241872189050376550, 4873761343609509542490
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- J-C. Aval, Multivariate Fuss-Catalan Numbers, arXiv:0711.0906v1, Discrete Math., 308 (2008), 4660-4669.
- Thomas A. Dowling, Catalan Numbers Chapter 7
- Wojciech Mlotkowski, Fuss-Catalan Numbers in Noncommutative Probability, Docum. Mathm. 15: 939-955.
-
[Binomial(10*n+5, n)/(2*n+1): n in [0..30]]; // Vincenzo Librandi, Dec 28 2013
-
Table[Binomial[10 n + 5, n]/(2 n + 1), {n, 0, 30}] (* Vincenzo Librandi, Dec 28 2013 *)
-
a(n) = binomial(10*n+5,n)/(2*n+1);
-
{a(n)=local(B=1); for(i=0, n, B=(1+x*B^2)^5+x*O(x^n)); polcoeff(B, n)}
Showing 1-10 of 13 results.
Comments