A234465
a(n) = 3*binomial(8*n+6,n)/(4*n+3).
Original entry on oeis.org
1, 6, 63, 812, 11655, 178794, 2869685, 47593176, 809172936, 14028048650, 247039158366, 4406956913268, 79470057050020, 1446283758823470, 26529603944225670, 489989612605050800, 9104498753815680600, 170073237411754811568, 3192081704235788729043
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- J-C. Aval, Multivariate Fuss-Catalan Numbers, arXiv:0711.0906v1, Discrete Math., 308 (2008), 4660-4669.
- Thomas A. Dowling, Catalan Numbers Chapter 7
- Wojciech Mlotkowski, Fuss-Catalan Numbers in Noncommutative Probability, Docum. Mathm. 15: 939-955.
- Wikipedia, Fuss-Catalan number
Cf.
A000108,
A007556,
A234461,
A234462,
A234463,
A234464,
A234466,
A234467,
A230390,
A007556,
A069271,
A118970,
A212073,
A233834,
A234510,
A234571,
A235339.
-
[3*Binomial(8*n+6, n)/(4*n+3): n in [0..30]]; // Vincenzo Librandi, Dec 26 2013
-
Table[3 Binomial[8 n + 6, n]/(4 n + 3), {n, 0, 40}] (* Vincenzo Librandi, Dec 26 2013 *)
-
a(n) = 3*binomial(8*n+6,n)/(4*n+3);
-
{a(n)=local(B=1); for(i=0, n, B=(1+x*B^(4/3))^6+x*O(x^n)); polcoeff(B, n)}
A234571
a(n) = 4*binomial(10*n+8,n)/(5*n+4).
Original entry on oeis.org
1, 8, 108, 1776, 32430, 632016, 12876864, 270964320, 5843355957, 128462407840, 2868356980060, 64869895026144, 1482877843096650, 34207542810153216, 795318309360948240, 18617396126132233920, 438423206616057162258, 10379232525028947311160, 246878659984195222962220
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- J-C. Aval, Multivariate Fuss-Catalan Numbers, arXiv:0711.0906v1, Discrete Math., 308 (2008), 4660-4669.
- Thomas A. Dowling, Catalan Numbers Chapter 7
- Wojciech Mlotkowski, Fuss-Catalan Numbers in Noncommutative Probability, Docum. Mathm. 15: 939-955.
- Wikipedia, Fuss-Catalan number
Cf.
A059968,
A234525,
A234526,
A234527,
A234528,
A234529,
A234570,
A234573,
A059968,
A069271,
A118970,
A212073,
A233834,
A234465,
A234510,
A235339.
-
[4*Binomial(10*n+8, n)/(5*n+4): n in [0..30]];
-
Table[4 Binomial[10 n + 8, n]/(5 n + 4), {n, 0, 30}]
-
a(n) = 4*binomial(10*n+8,n)/(5*n+4);
-
{a(n)=local(B=1); for(i=0, n, B=(1+x*B^(5/4))^8+x*O(x^n)); polcoeff(B, n)}
A212071
G.f. satisfies: A(x) = (1 + x*A(x)^3)^2.
Original entry on oeis.org
1, 2, 13, 114, 1150, 12586, 145299, 1741844, 21475146, 270570300, 3468352701, 45089941936, 593082894768, 7878407177270, 105542811922950, 1424267372100456, 19343105144742098, 264182048662182420, 3626176386241346070, 49995713597946235350, 692084935397470961346
Offset: 0
G.f.: A(x) = 1 + 2*x + 13*x^2 + 114*x^3 + 1150*x^4 + 12586*x^5 +...
Related expansions:
A(x)^3 = 1 + 6*x + 51*x^2 + 506*x^3 + 5481*x^4 +...+ A002295(n+1)*x^n +...
A(x)^(1/2) = 1 + x + 6*x^2 + 51*x^3 + 506*x^4 +...+ A002295(n)*x^n +...
- Michael De Vlieger, Table of n, a(n) for n = 0..856
- Gi-Sang Cheon, S.-T. Jin, and L. W. Shapiro, A combinatorial equivalence relation for formal power series, Linear Algebra and its Applications, Volume 491, 15 February 2016, Pages 123-137.
- Clemens Heuberger, Sarah J. Selkirk, and Stephan Wagner, Enumeration of Generalized Dyck Paths Based on the Height of Down-Steps Modulo k, arXiv:2204.14023 [math.CO], 2022.
- Wikipedia, Fuss-Catalan number
-
Table[c=6n+2;(2*Binomial[c,n])/c,{n,0,20}] (* Harvey P. Dale, Oct 14 2013 *)
-
{a(n)=binomial(6*n+2,n) * 2/(6*n+2)}
for(n=0, 40, print1(a(n), ", "))
-
{a(n)=local(A=1+2*x); for(i=1, n, A=(1+x*A^3)^2+x*O(x^n)); polcoeff(A, n)}
A234510
a(n) = 7*binomial(9*n+7,n)/(9*n+7).
Original entry on oeis.org
1, 7, 84, 1232, 20090, 349860, 6371764, 119877472, 2311664355, 45448324110, 907580289616, 18358110017520, 375353605696524, 7744997102466932, 161070300819384000, 3372697621463787456, 71046594621639707245, 1504569659175026591805
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- J-C. Aval, Multivariate Fuss-Catalan Numbers, arXiv:0711.0906v1, Discrete Math., 308 (2008), 4660-4669.
- Thomas A. Dowling, Catalan Numbers Chapter 7
- Wojciech Mlotkowski, Fuss-Catalan Numbers in Noncommutative Probability, Docum. Mathm. 15: 939-955.
- Wikipedia, Fuss-Catalan number
Cf.
A000108,
A143554,
A234505,
A234506,
A234507,
A234508,
A234509,
A234513,
A232265,
A062994,
A069271,
A118970,
A212073,
A233834,
A234465,
A234571,
A235339.
-
[7*Binomial(9*n+7, n)/(9*n+7): n in [0..30]]; // Vincenzo Librandi, Dec 27 2013
-
Table[7 Binomial[9 n + 7, n]/(9 n + 7), {n, 0, 40}] (* Vincenzo Librandi, Dec 27 2013 *)
-
a(n) = 7*binomial(9*n+7,n)/(9*n+7);
-
{a(n)=local(B=1); for(i=0, n, B=(1+x*B^(9/7))^7+x*O(x^n)); polcoeff(B, n)}
A233834
a(n) = 5*binomial(7*n+5,n)/(7*n+5).
Original entry on oeis.org
1, 5, 45, 500, 6200, 82251, 1142295, 16398200, 241379325, 3623534200, 55262073757, 853814730600, 13335836817420, 210225027967325, 3340362288091500, 53443628421286320, 860246972339613855, 13921016318025200505, 226352372251889455000, 3696160728052814340000
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- J-C. Aval, Multivariate Fuss-Catalan Numbers, arXiv:0711.0906v1, Discrete Math., 308 (2008), 4660-4669.
- Thomas A. Dowling, Catalan Numbers Chapter 7
- Wojciech Mlotkowski, Fuss-Catalan Numbers in Noncommutative Probability, Docum. Mathm. 15: 939-955.
- Wikipedia, Fuss-Catalan number
Cf.
A000108,
A002296,
A233832,
A233833,
A143547,
A130565,
A233835,
A233907,
A233908,
A002296,
A069271,
A118970,
A212073,
A234465,
A234510,
A234571,
A235339.
-
[5*Binomial(7*n+5, n)/(7*n+5): n in [0..30]];
-
Table[5 Binomial[7 n + 5, n]/(7 n + 5), {n, 0, 30}]
-
a(n) = 5*binomial(7*n+5,n)/(7*n+5);
-
{a(n)=local(B=1); for(i=0, n, B=(1+x*B^(7/5))^5+x*O(x^n)); polcoeff(B, n)}
A233743
a(n) = 7*binomial(6*n + 7, n)/(6*n + 7).
Original entry on oeis.org
1, 7, 63, 644, 7105, 82467, 992446, 12271512, 154962990, 1990038435, 25909892008, 341225775072, 4537563627415, 60842326873230, 821692714673340, 11167153485624304, 152610018401940330, 2095863415900961490, 28910564819681953485, 400379714692751795820
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- J-C. Aval, Multivariate Fuss-Catalan Numbers, arXiv:0711.0906 [math.CO], 2007.
- J-C. Aval, Multivariate Fuss-Catalan Numbers, Discrete Math., 308 (2008), 4660-4669.
- Thomas A. Dowling, Catalan Numbers Chapter 7
- Wojciech Mlotkowski, Fuss-Catalan Numbers in Noncommutative Probability, Docum. Mathm. 15: 939-955.
- Wikipedia, Fuss-Catalan number
-
[7*Binomial(6*n+7, n)/(6*n+7): n in [0..30]]; // Vincenzo Librandi, Dec 16 2013
-
Table[7 Binomial[6 n + 7, n]/(6 n + 7), {n, 0, 40}] (* Vincenzo Librandi, Dec 16 2013 *)
-
a(n) = 7*binomial(6*n+7,n)/(6*n+7);
-
{a(n)=local(B=1); for(i=0, n, B=(1+x*B^(6/7))^7+x*O(x^n)); polcoeff(B, n)}
A212072
G.f. satisfies: A(x) = (1 + x*A(x)^2)^3.
Original entry on oeis.org
1, 3, 21, 190, 1950, 21576, 250971, 3025308, 37456650, 473498025, 6085977381, 79296104784, 1044955576496, 13903071489300, 186507160795350, 2519857658331576, 34258270557555282, 468322722628414290, 6433538749783033350, 88767899653496377050, 1229626632793564911906
Offset: 0
G.f.: A(x) = 1 + 3*x + 21*x^2 + 190*x^3 + 1950*x^4 + 21576*x^5 + ...
Related expansions:
A(x)^2 = 1 + 6*x + 51*x^2 + 506*x^3 + 5481*x^4 + ... + A002295(n+1)*x^n + ...
A(x)^(1/3) = 1 + x + 6*x^2 + 51*x^3 + 506*x^4 + ... + A002295(n)*x^n + ...
- Michael De Vlieger, Table of n, a(n) for n = 0..855
- Alexander Burstein and Louis W. Shapiro, Pseudo-involutions in the Riordan group, arXiv:2112.11595 [math.CO], 2021.
- Clemens Heuberger, Sarah J. Selkirk, and Stephan Wagner, Enumeration of Generalized Dyck Paths Based on the Height of Down-Steps Modulo k, arXiv:2204.14023 [math.CO], 2022.
-
Table[(3 Binomial[#, n])/# &[6 n + 3], {n, 0, 20}] (* Michael De Vlieger, May 13 2022 *)
-
{a(n)=binomial(6*n+3,n) * 3/(6*n+3)}
for(n=0, 40, print1(a(n), ", "))
-
{a(n)=local(A=1+3*x); for(i=1, n, A=(1+x*A^2)^3+x*O(x^n)); polcoeff(A, n)}
A235339
a(n) = 9*binomial(11*n+9,n)/(11*n+9).
Original entry on oeis.org
1, 9, 135, 2460, 49725, 1072197, 24163146, 562311720, 13409091540, 325949656825, 8046743477058, 201198155083200, 5084704634041305, 129673310477725350, 3332952595603387800, 86250038091202771344, 2245329811618166111985
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- J-C. Aval, Multivariate Fuss-Catalan Numbers, arXiv:0711.0906 [math.CO], 2007; Discrete Math., 308 (2008), 4660-4669.
- Thomas A. Dowling, Catalan Numbers Chapter 7
- Wojciech Mlotkowski, Fuss-Catalan Numbers in Noncommutative Probability, Docum. Mathm. 15: 939-955.
- Wikipedia, Fuss-Catalan number
Cf.
A230388,
A234868,
A234869,
A234870,
A234871,
A234872,
A234873,
A235338,
A235340,
A069271,
A118970,
A212073,
A230388,
A233834,
A234465,
A234510,
A234571.
-
[9*Binomial(11*n+9, n)/(11*n+9): n in [0..30]];
-
Table[9 Binomial[11 n + 9, n]/(11 n + 9), {n, 0, 30}]
-
a(n) = 9*binomial(11*n+9,n)/(11*n+9);
-
{a(n)=local(B=1); for(i=0, n, B=(1+x*B^(11/9))^9+x*O(x^n)); polcoeff(B, n)}
A233827
a(n) = 8*binomial(6*n+8,n)/(6*n+8).
Original entry on oeis.org
1, 8, 76, 800, 8990, 105672, 1283464, 15981504, 202927725, 2617624680, 34206162848, 451872681728, 6024664312030, 80964348872400, 1095590286231120, 14915165412813184, 204140673966231870, 2807362363541687280, 38772186055550141700
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- J-C. Aval, Multivariate Fuss-Catalan Numbers, arXiv:0711.0906v1, Discrete Math., 308 (2008), 4660-4669.
- Thomas A. Dowling, Catalan Numbers Chapter 7
- Wojciech Mlotkowski, Fuss-Catalan Numbers in Noncommutative Probability, Docum. Mathm. 15: 939-955.
-
[8*Binomial(6*n+8, n)/(6*n+8): n in [0..30]];
-
Table[8 Binomial[6 n + 8, n]/(6 n + 8), {n, 0, 30}]
-
a(n) = 8*binomial(6*n+8,n)/(6*n+8);
-
{a(n)=local(B=1); for(i=0, n, B=(1+x*B^(6/8))^8+x*O(x^n)); polcoeff(B, n)}
A233829
a(n) = 3*binomial(6*n+9,n)/(2*n+3).
Original entry on oeis.org
1, 9, 90, 975, 11160, 132867, 1629012, 20430900, 260907075, 3381098545, 44352058608, 587787511779, 7858257798300, 105855415586550, 1435361957277480, 19576154604317304, 268364706225271110, 3695862686045572350, 51108790709588823150
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- J-C. Aval, Multivariate Fuss-Catalan Numbers, arXiv:0711.0906v1, Discrete Math., 308 (2008), 4660-4669.
- Thomas A. Dowling, Catalan Numbers Chapter 7
- Wojciech Mlotkowski, Fuss-Catalan Numbers in Noncommutative Probability, Docum. Mathm. 15: 939-955.
-
[3*Binomial(6*n+9, n)/(2*n+3): n in [0..30]];
-
Table[3 Binomial[6 n + 9, n]/(2 n + 3), {n, 0, 30}]
-
a(n) = 3*binomial(6*n+9,n)/(2*n+3);
-
{a(n)=local(B=1); for(i=0, n, B=(1+x*B^(2/3))^9+x*O(x^n)); polcoeff(B, n)}
Showing 1-10 of 14 results.
Comments