cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A234465 a(n) = 3*binomial(8*n+6,n)/(4*n+3).

Original entry on oeis.org

1, 6, 63, 812, 11655, 178794, 2869685, 47593176, 809172936, 14028048650, 247039158366, 4406956913268, 79470057050020, 1446283758823470, 26529603944225670, 489989612605050800, 9104498753815680600, 170073237411754811568, 3192081704235788729043
Offset: 0

Views

Author

Tim Fulford, Dec 26 2013

Keywords

Comments

Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), this is the case p = 8, r = 6.

Crossrefs

Programs

  • Magma
    [3*Binomial(8*n+6, n)/(4*n+3): n in [0..30]]; // Vincenzo Librandi, Dec 26 2013
  • Mathematica
    Table[3 Binomial[8 n + 6, n]/(4 n + 3), {n, 0, 40}] (* Vincenzo Librandi, Dec 26 2013 *)
  • PARI
    a(n) = 3*binomial(8*n+6,n)/(4*n+3);
    
  • PARI
    {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(4/3))^6+x*O(x^n)); polcoeff(B, n)}
    

Formula

G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, where p = 8, r = 6.
O.g.f. A(x) = 1/x * series reversion (x/C(x)^6), where C(x) is the o.g.f. for the Catalan numbers A000108. A(x)^(1/6) is the o.g.f. for A007556. - Peter Bala, Oct 14 2015
D-finite with recurrence: 7*n*(7*n+4)*(7*n+1)*(7*n+5)*(7*n+2)*(7*n+6)*(7*n+3)*a(n) -128*(8*n+3)*(4*n-1)*(8*n+1)*(2*n+1)*(8*n-1)*(4*n+1)*(8*n+5)*a(n-1)=0. - R. J. Mathar, Feb 21 2020

A212073 G.f. satisfies: A(x) = (1 + x*A(x)^(3/2))^4.

Original entry on oeis.org

1, 4, 30, 280, 2925, 32736, 383838, 4654320, 57887550, 734405100, 9467075926, 123648163392, 1632743088275, 21761329287600, 292362576381900, 3955219615609056, 53834425161872586, 736687428853685400, 10129401435828605700, 139876690363085200200
Offset: 0

Views

Author

Paul D. Hanna, Apr 29 2012

Keywords

Comments

Fuss-Catalan sequence is a(n,p,r) = r*binomial(p*n + r, n)/(p*n + r); this is the case p = 6, r = 4. The o.g.f. B(x) of the Fuss_catalan sequence a(n,p,r) satisfies B(x) = {1 + x*B(x)^(p/r)}^r. - Peter Bala, Oct 14 2015

Examples

			G.f.: A(x) = 1 + 4*x + 30*x^2 + 280*x^3 + 2925*x^4 + 32736*x^5 +...
Related expansions:
A(x)^(3/2) = 1 + 6*x + 51*x^2 + 506*x^3 + 5481*x^4 +...+ A002295(n+1)*x^n +...
A(x)^(1/4) = 1 + x + 6*x^2 + 51*x^3 + 506*x^4 +...+ A002295(n)*x^n +...
		

Crossrefs

Programs

  • Mathematica
    m = 20; A[_] = 0;
    Do[A[x_] = (1 + x*A[x]^(3/2))^4 + O[x]^m, {m}];
    CoefficientList[A[x], x] (* Jean-François Alcover, Oct 20 2019 *)
  • PARI
    {a(n)=binomial(6*n+4,n) * 4/(6*n+4)}
    for(n=0, 40, print1(a(n), ", "))
    
  • PARI
    {a(n)=local(A=1+4*x); for(i=1, n, A=(1+x*A^(3/2))^4+x*O(x^n)); polcoeff(A, n)}

Formula

a(n) = 4*binomial(6*n+4,n)/(6*n+4).
G.f. A(x) = G(x)^4 where G(x) = 1 + x*G(x)^6 is the g.f. of A002295.
O.g.f. A(x) = 1/x * series reversion (x/C(x)^4), where C(x) is the o.g.f. for the Catalan numbers A000108. - Peter Bala, Oct 14 2015
D-finite with recurrence 5*n*(5*n+1)*(5*n+2)*(5*n+3)*(5*n+4)*a(n) -72*(6*n-1)*(3*n-1)*(2*n+1)*(3*n+1)*(6*n+1)*a(n-1)=0. - R. J. Mathar, Nov 22 2024

A234571 a(n) = 4*binomial(10*n+8,n)/(5*n+4).

Original entry on oeis.org

1, 8, 108, 1776, 32430, 632016, 12876864, 270964320, 5843355957, 128462407840, 2868356980060, 64869895026144, 1482877843096650, 34207542810153216, 795318309360948240, 18617396126132233920, 438423206616057162258, 10379232525028947311160, 246878659984195222962220
Offset: 0

Views

Author

Tim Fulford, Dec 28 2013

Keywords

Comments

Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), where p = 10, r = 8.

Crossrefs

Programs

  • Magma
    [4*Binomial(10*n+8, n)/(5*n+4): n in [0..30]];
  • Mathematica
    Table[4 Binomial[10 n + 8, n]/(5 n + 4), {n, 0, 30}]
  • PARI
    a(n) = 4*binomial(10*n+8,n)/(5*n+4);
    
  • PARI
    {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(5/4))^8+x*O(x^n)); polcoeff(B, n)}
    

Formula

G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, where p = 10, r = 8.
O.g.f. A(x) = 1/x * series reversion (x/C(x)^8), where C(x) is the o.g.f. for the Catalan numbers A000108. A(x)^(1/8) is the o.g.f. for A059968. - Peter Bala, Oct 14 2015

A234510 a(n) = 7*binomial(9*n+7,n)/(9*n+7).

Original entry on oeis.org

1, 7, 84, 1232, 20090, 349860, 6371764, 119877472, 2311664355, 45448324110, 907580289616, 18358110017520, 375353605696524, 7744997102466932, 161070300819384000, 3372697621463787456, 71046594621639707245, 1504569659175026591805
Offset: 0

Views

Author

Tim Fulford, Dec 27 2013

Keywords

Comments

Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), where p = 9, r = 7.

Crossrefs

Programs

  • Magma
    [7*Binomial(9*n+7, n)/(9*n+7): n in [0..30]]; // Vincenzo Librandi, Dec 27 2013
  • Mathematica
    Table[7 Binomial[9 n + 7, n]/(9 n + 7), {n, 0, 40}] (* Vincenzo Librandi, Dec 27 2013 *)
  • PARI
    a(n) = 7*binomial(9*n+7,n)/(9*n+7);
    
  • PARI
    {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(9/7))^7+x*O(x^n)); polcoeff(B, n)}
    

Formula

G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, where p = 9, r = 7.
O.g.f. A(x) = 1/x * series reversion (x/C(x)^7), where C(x) is the o.g.f. for the Catalan numbers A000108. A(x)^(1/7) is the o.g.f. for A062994. - Peter Bala, Oct 14 2015

A233834 a(n) = 5*binomial(7*n+5,n)/(7*n+5).

Original entry on oeis.org

1, 5, 45, 500, 6200, 82251, 1142295, 16398200, 241379325, 3623534200, 55262073757, 853814730600, 13335836817420, 210225027967325, 3340362288091500, 53443628421286320, 860246972339613855, 13921016318025200505, 226352372251889455000, 3696160728052814340000
Offset: 0

Views

Author

Tim Fulford, Dec 16 2013

Keywords

Comments

Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), this is the case p = 7, r = 5.

Crossrefs

Programs

  • Magma
    [5*Binomial(7*n+5, n)/(7*n+5): n in [0..30]];
  • Mathematica
    Table[5 Binomial[7 n + 5, n]/(7 n + 5), {n, 0, 30}]
  • PARI
    a(n) = 5*binomial(7*n+5,n)/(7*n+5);
    
  • PARI
    {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(7/5))^5+x*O(x^n)); polcoeff(B, n)}
    

Formula

G.f. satisfies: A(x) = {1 + x*A(x)^(p/r)}^r, where p = 7, r = 5.
O.g.f. A(x) = 1/x * series reversion (x/C(x)^5), where C(x) is the o.g.f. for the Catalan numbers A000108. A(x)^(1/5) is the o.g.f. for A002296. - Peter Bala, Oct 14 2015

A235340 a(n) = 10*binomial(11*n+10,n)/(11*n+10).

Original entry on oeis.org

1, 10, 155, 2870, 58565, 1270752, 28765650, 671650110, 16057800980, 391139588190, 9672348219898, 242182964452000, 6127720969229265, 156431295179478200, 4024231652469275640, 104218796026870015374, 2714941275486017847825
Offset: 0

Views

Author

Tim Fulford, Jan 06 2014

Keywords

Comments

Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), this is the case p=11, r=10.

Crossrefs

Programs

  • Magma
    [10*Binomial(11*n+10, n)/(11*n+10): n in [0..30]];
  • Mathematica
    Table[10 Binomial[11 n + 10, n]/(11 n + 10), {n, 0, 30}]
  • PARI
    a(n) = 10*binomial(11*n+10,n)/(11*n+10);
    
  • PARI
    {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(11/10))^10+x*O(x^n)); polcoeff(B, n)}
    

Formula

G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, here p=11, r=10.
From Wolfdieter Lang, Feb 15 2024: (Start)
a(n) = binomial(11*n + 9, n + 1)/(10*n + 9) which is instance k = 10 of c(k, n+1) given in a comment in A130564.
x*B(x), with the g.f. above named B(x), is the compositional inverse of y*(1 - y)^10, hence B(x)*(1 - x*B(x))^10 = 1.
G.f.: 11F10([10..20]/11, [11..20]/10; (11^11/10^10)*x) = (10/(11*x))*(1 - 10F9([-1,1,2,3,4,5,6,7,8,9]/11, [1,2,3,4,5,6,7,8,9]/10; (11^11/10^10)*x)).
(End)

A235338 a(n) = 8*binomial(11*n+8,n)/(11*n+8).

Original entry on oeis.org

1, 8, 116, 2080, 41650, 892552, 20027112, 464550336, 11050084695, 268070745800, 6607118937848, 164979021222400, 4164615224071926, 106105019316578800, 2724883054841727200, 70462458864489354624, 1833143662625459289495
Offset: 0

Views

Author

Tim Fulford, Jan 06 2014

Keywords

Comments

Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), this is the case p=11, r=8.

Crossrefs

Programs

  • Magma
    [8*Binomial(11*n+8, n)/(11*n+8): n in [0..30]];
  • Mathematica
    Table[8 Binomial[11 n + 8, n]/(11 n + 8), {n, 0, 30}]
  • PARI
    a(n) = 8*binomial(11*n+8, n)/(11*n+8);
    
  • PARI
    {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(11/8))^8+x*O(x^n)); polcoeff(B, n)}
    

Formula

G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, here p=11, r=8.
Showing 1-7 of 7 results.