A118971
a(n) = binomial(5*n+3,n)/(n+1).
Original entry on oeis.org
1, 4, 26, 204, 1771, 16380, 158224, 1577532, 16112057, 167710664, 1772645420, 18974357220, 205263418941, 2240623268512, 24648785802336, 272994644359580, 3041495503591365, 34064252968167180, 383302465665133014
Offset: 0
- Michael De Vlieger, Table of n, a(n) for n = 0..924
- Paul Barry, Characterizations of the Borel triangle and Borel polynomials, arXiv:2001.08799 [math.CO], 2020.
- Elżbieta Liszewska and Wojciech Młotkowski, Some relatives of the Catalan sequence, arXiv:1907.10725 [math.CO], 2019.
- J. Sawada, J. Sears, A. Trautrim, and A. Williams, Demystifying our Grandparent's De Bruijn Sequences with Concatenation Trees, arXiv:2308.12405 [math.CO], 2023.
-
Table[4*Binomial[5n+3,n]/(4n+4),{n,0,30}] (* Harvey P. Dale, Apr 09 2012 *)
A130564
Member k=5 of a family of generalized Catalan numbers.
Original entry on oeis.org
1, 5, 40, 385, 4095, 46376, 548340, 6690585, 83615350, 1064887395, 13770292256, 180320238280, 2386316821325, 31864803599700, 428798445360120, 5809228810425801, 79168272296871450, 1084567603590147950
Offset: 1
- Ronald L. Graham, Donald E. Knuth and Oren Patashnik, Concrete Mathematics, Addison-Wesley, Reading, MA, 2nd ed. 1994, pp. 200, 363.
- Michael De Vlieger, Table of n, a(n) for n = 1..856
- K. Kobayashi, H. Morita and M. Hoshi, Coding of ordered trees, Proceedings, IEEE International Symposium on Information Theory, ISIT 2000, Sorrento, Italy, Jun 25 2000.
- Elżbieta Liszewska, Wojciech Młotkowski, Some relatives of the Catalan sequence, arXiv:1907.10725 [math.CO], 2019.
Cf.
A000012,
A000108,
A001764,
A002293,
A002294,
A002295,
A002296,
A006013,
A062994,
A006632,
A007556,
A118971,
A130565,
A234466,
A234513,
A234573,
A235340.
-
Rest@ CoefficientList[InverseSeries[Series[y (1 - y)^5, {y, 0, 18}], x], x] (* Michael De Vlieger, Oct 13 2019 *)
A235339
a(n) = 9*binomial(11*n+9,n)/(11*n+9).
Original entry on oeis.org
1, 9, 135, 2460, 49725, 1072197, 24163146, 562311720, 13409091540, 325949656825, 8046743477058, 201198155083200, 5084704634041305, 129673310477725350, 3332952595603387800, 86250038091202771344, 2245329811618166111985
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- J-C. Aval, Multivariate Fuss-Catalan Numbers, arXiv:0711.0906 [math.CO], 2007; Discrete Math., 308 (2008), 4660-4669.
- Thomas A. Dowling, Catalan Numbers Chapter 7
- Wojciech Mlotkowski, Fuss-Catalan Numbers in Noncommutative Probability, Docum. Mathm. 15: 939-955.
- Wikipedia, Fuss-Catalan number
Cf.
A230388,
A234868,
A234869,
A234870,
A234871,
A234872,
A234873,
A235338,
A235340,
A069271,
A118970,
A212073,
A230388,
A233834,
A234465,
A234510,
A234571.
-
[9*Binomial(11*n+9, n)/(11*n+9): n in [0..30]];
-
Table[9 Binomial[11 n + 9, n]/(11 n + 9), {n, 0, 30}]
-
a(n) = 9*binomial(11*n+9,n)/(11*n+9);
-
{a(n)=local(B=1); for(i=0, n, B=(1+x*B^(11/9))^9+x*O(x^n)); polcoeff(B, n)}
A235338
a(n) = 8*binomial(11*n+8,n)/(11*n+8).
Original entry on oeis.org
1, 8, 116, 2080, 41650, 892552, 20027112, 464550336, 11050084695, 268070745800, 6607118937848, 164979021222400, 4164615224071926, 106105019316578800, 2724883054841727200, 70462458864489354624, 1833143662625459289495
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- J-C. Aval, Multivariate Fuss-Catalan Numbers, arXiv:0711.0906 [math.CO], 2007; Discrete Math., 308 (2008), 4660-4669.
- Thomas A. Dowling, Catalan Numbers Chapter 7 [broken link]
- Wojciech Mlotkowski, Fuss-Catalan Numbers in Noncommutative Probability, Docum. Mathm. 15: 939-955.
-
[8*Binomial(11*n+8, n)/(11*n+8): n in [0..30]];
-
Table[8 Binomial[11 n + 8, n]/(11 n + 8), {n, 0, 30}]
-
a(n) = 8*binomial(11*n+8, n)/(11*n+8);
-
{a(n)=local(B=1); for(i=0, n, B=(1+x*B^(11/8))^8+x*O(x^n)); polcoeff(B, n)}
A386558
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals: A(n,k) = binomial((k+1)*n+k-1,n)/(n+1).
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 7, 5, 0, 1, 4, 15, 30, 14, 0, 1, 5, 26, 91, 143, 42, 0, 1, 6, 40, 204, 612, 728, 132, 0, 1, 7, 57, 385, 1771, 4389, 3876, 429, 0, 1, 8, 77, 650, 4095, 16380, 32890, 21318, 1430, 0, 1, 9, 100, 1015, 8184, 46376, 158224, 254475, 120175, 4862, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, ...
0, 2, 7, 15, 26, 40, 57, ...
0, 5, 30, 91, 204, 385, 650, ...
0, 14, 143, 612, 1771, 4095, 8184, ...
0, 42, 728, 4389, 16380, 46376, 109668, ...
0, 132, 3876, 32890, 158224, 548340, 1533939, ...
Columns k=0..10 give
A000007,
A000108,
A006013,
A006632,
A118971,
A130564(n+1),
A130565(n+1),
A234466,
A234513,
A234573,
A235340.
Showing 1-5 of 5 results.
Comments