cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A212073 G.f. satisfies: A(x) = (1 + x*A(x)^(3/2))^4.

Original entry on oeis.org

1, 4, 30, 280, 2925, 32736, 383838, 4654320, 57887550, 734405100, 9467075926, 123648163392, 1632743088275, 21761329287600, 292362576381900, 3955219615609056, 53834425161872586, 736687428853685400, 10129401435828605700, 139876690363085200200
Offset: 0

Views

Author

Paul D. Hanna, Apr 29 2012

Keywords

Comments

Fuss-Catalan sequence is a(n,p,r) = r*binomial(p*n + r, n)/(p*n + r); this is the case p = 6, r = 4. The o.g.f. B(x) of the Fuss_catalan sequence a(n,p,r) satisfies B(x) = {1 + x*B(x)^(p/r)}^r. - Peter Bala, Oct 14 2015

Examples

			G.f.: A(x) = 1 + 4*x + 30*x^2 + 280*x^3 + 2925*x^4 + 32736*x^5 +...
Related expansions:
A(x)^(3/2) = 1 + 6*x + 51*x^2 + 506*x^3 + 5481*x^4 +...+ A002295(n+1)*x^n +...
A(x)^(1/4) = 1 + x + 6*x^2 + 51*x^3 + 506*x^4 +...+ A002295(n)*x^n +...
		

Crossrefs

Programs

  • Mathematica
    m = 20; A[_] = 0;
    Do[A[x_] = (1 + x*A[x]^(3/2))^4 + O[x]^m, {m}];
    CoefficientList[A[x], x] (* Jean-François Alcover, Oct 20 2019 *)
  • PARI
    {a(n)=binomial(6*n+4,n) * 4/(6*n+4)}
    for(n=0, 40, print1(a(n), ", "))
    
  • PARI
    {a(n)=local(A=1+4*x); for(i=1, n, A=(1+x*A^(3/2))^4+x*O(x^n)); polcoeff(A, n)}

Formula

a(n) = 4*binomial(6*n+4,n)/(6*n+4).
G.f. A(x) = G(x)^4 where G(x) = 1 + x*G(x)^6 is the g.f. of A002295.
O.g.f. A(x) = 1/x * series reversion (x/C(x)^4), where C(x) is the o.g.f. for the Catalan numbers A000108. - Peter Bala, Oct 14 2015
D-finite with recurrence 5*n*(5*n+1)*(5*n+2)*(5*n+3)*(5*n+4)*a(n) -72*(6*n-1)*(3*n-1)*(2*n+1)*(3*n+1)*(6*n+1)*a(n-1)=0. - R. J. Mathar, Nov 22 2024

A212071 G.f. satisfies: A(x) = (1 + x*A(x)^3)^2.

Original entry on oeis.org

1, 2, 13, 114, 1150, 12586, 145299, 1741844, 21475146, 270570300, 3468352701, 45089941936, 593082894768, 7878407177270, 105542811922950, 1424267372100456, 19343105144742098, 264182048662182420, 3626176386241346070, 49995713597946235350, 692084935397470961346
Offset: 0

Views

Author

Paul D. Hanna, Apr 29 2012

Keywords

Comments

The two parameter Fuss-Catalan sequence is A(n,p,r) := r*binomial(n*p + r, n)/(n*p + r), with o.g.f. G(p,r,x) = G(x) satisfying G(x) = {1 + x*G(x)^(p/r)}^r ; this is the case p = 6, r = 2. - Peter Bala, Oct 14 2015

Examples

			G.f.: A(x) = 1 + 2*x + 13*x^2 + 114*x^3 + 1150*x^4 + 12586*x^5 +...
Related expansions:
A(x)^3 = 1 + 6*x + 51*x^2 + 506*x^3 + 5481*x^4 +...+ A002295(n+1)*x^n +...
A(x)^(1/2) = 1 + x + 6*x^2 + 51*x^3 + 506*x^4 +...+ A002295(n)*x^n +...
		

Crossrefs

Programs

  • Mathematica
    Table[c=6n+2;(2*Binomial[c,n])/c,{n,0,20}] (* Harvey P. Dale, Oct 14 2013 *)
  • PARI
    {a(n)=binomial(6*n+2,n) * 2/(6*n+2)}
    for(n=0, 40, print1(a(n), ", "))
    
  • PARI
    {a(n)=local(A=1+2*x); for(i=1, n, A=(1+x*A^3)^2+x*O(x^n)); polcoeff(A, n)}

Formula

a(n) = 2*binomial(6*n+2,n)/(6*n+2).
G.f.: A(x) = G(x)^2 where G(x) = 1 + x*G(x)^6 is the g.f. of A002295.
a(n) = 2*binomial(6n+1, n-1)/n for n>0, a(0)=1. [Bruno Berselli, Jan 19 2014]
A(x^2) = 1/x * series reversion (x/C(x^2)^2), where C(x) = (1 - sqrt( 1 - 4*x))/(2*x) is the o.g.f. for the Catalan numbers A000108. - Peter Bala, Oct 14 2015
D-finite with recurrence 5*n*(5*n+1)*(5*n+2)*(5*n-2)*(5*n-1)*a(n) -72*(6*n-1)*(3*n-1)*(2*n-1)*(3*n-2)*(6*n+1)*a(n-1)=0. - R. J. Mathar, Nov 22 2024

A233743 a(n) = 7*binomial(6*n + 7, n)/(6*n + 7).

Original entry on oeis.org

1, 7, 63, 644, 7105, 82467, 992446, 12271512, 154962990, 1990038435, 25909892008, 341225775072, 4537563627415, 60842326873230, 821692714673340, 11167153485624304, 152610018401940330, 2095863415900961490, 28910564819681953485, 400379714692751795820
Offset: 0

Views

Author

Tim Fulford, Dec 15 2013

Keywords

Comments

Fuss-Catalan sequence is a(n,p,r) = r*binomial(n*p + r, n)/(n*p + r); this is the case p = 6, r = 7.

Crossrefs

Cf. A000245 (k = 3), A006629 (k = 4), A196678 (k = 5), A233668 (k = 6), A233835 (k = 8), A234467 (k = 9), A232265 (k = 10), A229963 (k = 11).

Programs

  • Magma
    [7*Binomial(6*n+7, n)/(6*n+7): n in [0..30]]; // Vincenzo Librandi, Dec 16 2013
  • Mathematica
    Table[7 Binomial[6 n + 7, n]/(6 n + 7), {n, 0, 40}] (* Vincenzo Librandi, Dec 16 2013 *)
  • PARI
    a(n) = 7*binomial(6*n+7,n)/(6*n+7);
    
  • PARI
    {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(6/7))^7+x*O(x^n)); polcoeff(B, n)}
    

Formula

G.f. satisfies: A(x) = {1 + x*A(x)^(p/r)}^r, where p = 6, r = 7.
From _Peter Bala, Oct 16 2015: (Start)
O.g.f. A(x) = 1/x * series reversion (x*C(-x)^7), where C(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. for the Catalan numbers A000108. See cross-references for other Fuss-Catalan sequences with o.g.f. 1/x * series reversion (x*C(-x)^k), k = 3 through 11.
A(x)^(1/7) is the o.g.f. for A002295. (End)

Extensions

More terms from Vincenzo Librandi, Dec 16 2013

A233827 a(n) = 8*binomial(6*n+8,n)/(6*n+8).

Original entry on oeis.org

1, 8, 76, 800, 8990, 105672, 1283464, 15981504, 202927725, 2617624680, 34206162848, 451872681728, 6024664312030, 80964348872400, 1095590286231120, 14915165412813184, 204140673966231870, 2807362363541687280, 38772186055550141700
Offset: 0

Views

Author

Tim Fulford, Dec 16 2013

Keywords

Comments

Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), this is the case p=6, r=8.

Crossrefs

Programs

  • Magma
    [8*Binomial(6*n+8, n)/(6*n+8): n in [0..30]];
  • Mathematica
    Table[8 Binomial[6 n + 8, n]/(6 n + 8), {n, 0, 30}]
  • PARI
    a(n) = 8*binomial(6*n+8,n)/(6*n+8);
    
  • PARI
    {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(6/8))^8+x*O(x^n)); polcoeff(B, n)}
    

Formula

G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, where p=6, r=8.
From Ilya Gutkovskiy, Sep 14 2018: (Start)
E.g.f.: 5F5(4/3,3/2,5/3,11/6,13/6; 1,9/5,11/5,12/5,13/5; 46656*x/3125).
a(n) ~ 3^(6*n+15/2)*4^(3*n+5)/(sqrt(Pi)*5^(5*n+17/2)*n^(3/2)). (End)
D-finite with recurrence 5*n*(5*n+6)*(5*n+7)*(5*n+8)*(5*n+4)*a(n) -72*(6*n+5)*(3*n+2)*(2*n+1)*(3*n+1)*(6*n+7)*a(n-1)=0. - R. J. Mathar, Nov 22 2024

A233829 a(n) = 3*binomial(6*n+9,n)/(2*n+3).

Original entry on oeis.org

1, 9, 90, 975, 11160, 132867, 1629012, 20430900, 260907075, 3381098545, 44352058608, 587787511779, 7858257798300, 105855415586550, 1435361957277480, 19576154604317304, 268364706225271110, 3695862686045572350, 51108790709588823150
Offset: 0

Views

Author

Tim Fulford, Dec 16 2013

Keywords

Comments

Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), this is the case p=6, r=9.

Crossrefs

Programs

  • Magma
    [3*Binomial(6*n+9, n)/(2*n+3): n in [0..30]];
  • Mathematica
    Table[3 Binomial[6 n + 9, n]/(2 n + 3), {n, 0, 30}]
  • PARI
    a(n) = 3*binomial(6*n+9,n)/(2*n+3);
    
  • PARI
    {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(2/3))^9+x*O(x^n)); polcoeff(B, n)}
    

Formula

G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, where p=6, r=9.
From Ilya Gutkovskiy, Sep 14 2018: (Start)
E.g.f.: 5F5(3/2,5/3,11/6,13/6,7/3; 1,11/5,12/5,13/5,14/5; 46656*x/3125).
a(n) ~ 3^(6*n+21/2)*4^(3*n+4)/(sqrt(Pi)*5^(5*n+19/2)*n^(3/2)). (End)

A233830 a(n) = 5*binomial(6*n+10,n)/(3*n+5).

Original entry on oeis.org

1, 10, 105, 1170, 13640, 164502, 2036265, 25727800, 330482295, 4303216330, 56672074888, 753573733050, 10103474312100, 136435868978220, 1854009194816745, 25333847134998864, 347880174736462550, 4798137522234602700, 66441427922465470095, 923346006310186106010, 12873823246049001482400
Offset: 0

Views

Author

Tim Fulford, Dec 16 2013

Keywords

Comments

Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), this is the case p=6, r=10.

Crossrefs

Programs

  • Magma
    [5*Binomial(6*n+10, n)/(3*n+5): n in [0..30]];
  • Mathematica
    Table[5 Binomial[6 n + 10, n]/(3 n + 5), {n, 0, 30}]
  • PARI
    a(n) = 5*binomial(6*n+10,n)/(3*n+5);
    
  • PARI
    {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(3/5))^10+x*O(x^n)); polcoeff(B, n)}
    

Formula

G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, here p=6, r=10.
From Ilya Gutkovskiy, Sep 14 2018: (Start)
E.g.f.: 6F6(5/3,11/6,2,13/6,7/3,5/2; 1,11/5,12/5,13/5,14/5,3; 46656*x/3125).
a(n) ~ 3^(6*n+19/2)*4^(3*n+5)/(sqrt(Pi)*5^(5*n+19/2)*n^(3/2)). (End)

A386379 a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/5)} a(5*k) * a(n-1-5*k).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 13, 21, 30, 40, 51, 114, 190, 280, 385, 506, 1150, 1950, 2925, 4095, 5481, 12586, 21576, 32736, 46376, 62832, 145299, 250971, 383838, 548340, 749398, 1741844, 3025308, 4654320, 6690585, 9203634, 21475146, 37456650, 57887550
Offset: 0

Views

Author

Seiichi Manyama, Jul 20 2025

Keywords

Crossrefs

Programs

  • PARI
    apr(n, p, r) = r*binomial(n*p+r, n)/(n*p+r);
    a(n) = apr(n\5, 6, n%5+1);

Formula

For k=0..4, a(5*n+k) = (k+1) * binomial(6*n+k+1,n)/(6*n+k+1).
G.f. A(x) satisfies A(x) = 1/(1 - x * Product_{k=0..4} A(w^k*x)), where w = exp(2*Pi*i/5).
Showing 1-7 of 7 results.