cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A233743 a(n) = 7*binomial(6*n + 7, n)/(6*n + 7).

Original entry on oeis.org

1, 7, 63, 644, 7105, 82467, 992446, 12271512, 154962990, 1990038435, 25909892008, 341225775072, 4537563627415, 60842326873230, 821692714673340, 11167153485624304, 152610018401940330, 2095863415900961490, 28910564819681953485, 400379714692751795820
Offset: 0

Views

Author

Tim Fulford, Dec 15 2013

Keywords

Comments

Fuss-Catalan sequence is a(n,p,r) = r*binomial(n*p + r, n)/(n*p + r); this is the case p = 6, r = 7.

Crossrefs

Cf. A000245 (k = 3), A006629 (k = 4), A196678 (k = 5), A233668 (k = 6), A233835 (k = 8), A234467 (k = 9), A232265 (k = 10), A229963 (k = 11).

Programs

  • Magma
    [7*Binomial(6*n+7, n)/(6*n+7): n in [0..30]]; // Vincenzo Librandi, Dec 16 2013
  • Mathematica
    Table[7 Binomial[6 n + 7, n]/(6 n + 7), {n, 0, 40}] (* Vincenzo Librandi, Dec 16 2013 *)
  • PARI
    a(n) = 7*binomial(6*n+7,n)/(6*n+7);
    
  • PARI
    {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(6/7))^7+x*O(x^n)); polcoeff(B, n)}
    

Formula

G.f. satisfies: A(x) = {1 + x*A(x)^(p/r)}^r, where p = 6, r = 7.
From _Peter Bala, Oct 16 2015: (Start)
O.g.f. A(x) = 1/x * series reversion (x*C(-x)^7), where C(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. for the Catalan numbers A000108. See cross-references for other Fuss-Catalan sequences with o.g.f. 1/x * series reversion (x*C(-x)^k), k = 3 through 11.
A(x)^(1/7) is the o.g.f. for A002295. (End)

Extensions

More terms from Vincenzo Librandi, Dec 16 2013

A233829 a(n) = 3*binomial(6*n+9,n)/(2*n+3).

Original entry on oeis.org

1, 9, 90, 975, 11160, 132867, 1629012, 20430900, 260907075, 3381098545, 44352058608, 587787511779, 7858257798300, 105855415586550, 1435361957277480, 19576154604317304, 268364706225271110, 3695862686045572350, 51108790709588823150
Offset: 0

Views

Author

Tim Fulford, Dec 16 2013

Keywords

Comments

Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), this is the case p=6, r=9.

Crossrefs

Programs

  • Magma
    [3*Binomial(6*n+9, n)/(2*n+3): n in [0..30]];
  • Mathematica
    Table[3 Binomial[6 n + 9, n]/(2 n + 3), {n, 0, 30}]
  • PARI
    a(n) = 3*binomial(6*n+9,n)/(2*n+3);
    
  • PARI
    {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(2/3))^9+x*O(x^n)); polcoeff(B, n)}
    

Formula

G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, where p=6, r=9.
From Ilya Gutkovskiy, Sep 14 2018: (Start)
E.g.f.: 5F5(3/2,5/3,11/6,13/6,7/3; 1,11/5,12/5,13/5,14/5; 46656*x/3125).
a(n) ~ 3^(6*n+21/2)*4^(3*n+4)/(sqrt(Pi)*5^(5*n+19/2)*n^(3/2)). (End)

A233830 a(n) = 5*binomial(6*n+10,n)/(3*n+5).

Original entry on oeis.org

1, 10, 105, 1170, 13640, 164502, 2036265, 25727800, 330482295, 4303216330, 56672074888, 753573733050, 10103474312100, 136435868978220, 1854009194816745, 25333847134998864, 347880174736462550, 4798137522234602700, 66441427922465470095, 923346006310186106010, 12873823246049001482400
Offset: 0

Views

Author

Tim Fulford, Dec 16 2013

Keywords

Comments

Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), this is the case p=6, r=10.

Crossrefs

Programs

  • Magma
    [5*Binomial(6*n+10, n)/(3*n+5): n in [0..30]];
  • Mathematica
    Table[5 Binomial[6 n + 10, n]/(3 n + 5), {n, 0, 30}]
  • PARI
    a(n) = 5*binomial(6*n+10,n)/(3*n+5);
    
  • PARI
    {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(3/5))^10+x*O(x^n)); polcoeff(B, n)}
    

Formula

G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, here p=6, r=10.
From Ilya Gutkovskiy, Sep 14 2018: (Start)
E.g.f.: 6F6(5/3,11/6,2,13/6,7/3,5/2; 1,11/5,12/5,13/5,14/5,3; 46656*x/3125).
a(n) ~ 3^(6*n+19/2)*4^(3*n+5)/(sqrt(Pi)*5^(5*n+19/2)*n^(3/2)). (End)
Showing 1-3 of 3 results.