cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A234467 a(n) = 9*binomial(8*n + 9,n)/(8*n + 9).

Original entry on oeis.org

1, 9, 108, 1488, 22230, 350244, 5729724, 96395616, 1657248417, 28987537150, 514215324216, 9229030737264, 167283594343320, 3057857090083908, 56305821384711720, 1043424549990820800, 19445145508444588200, 364191559218548917713, 6851518654436447733980
Offset: 0

Views

Author

Tim Fulford, Dec 26 2013

Keywords

Comments

Fuss-Catalan sequence is a(n,p,r) = r*binomial(n*p + r,n)/(n*p + r); this is the case p = 8, r = 9.

Crossrefs

Cf. A000108, A000245 (k = 3), A006629 (k = 4), A196678 (k = 5), A233668 (k = 6), A233743 (k = 7), A233835 (k = 8), A232265 (k = 10), A229963 (k = 11).

Programs

  • Magma
    [9*Binomial(8*n+9, n)/(8*n+9): n in [0..30]]; // Vincenzo Librandi, Dec 26 2013
  • Mathematica
    Table[9 Binomial[8 n + 9, n]/(8 n + 9), {n, 0, 40}] (* Vincenzo Librandi, Dec 26 2013 *)
  • PARI
    a(n) = 9*binomial(8*n+9,n)/(8*n+9);
    
  • PARI
    {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(8/9))^9+x*O(x^n)); polcoeff(B, n)}
    

Formula

G.f. satisfies: A(x) = {1 + x*A(x)^(p/r)}^r, where p = 8, r = 9.
From Peter Bala, Oct 16 2015: (Start)
O.g.f.: (1/x) * series reversion (x*C(-x)^9), where C(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. for the Catalan numbers A000108. See cross-references for other Fuss-Catalan sequences with o.g.f. 1/x * series reversion (x*C(-x)^k), k = 3 through 11.
A(x)^(1/9) is the o.g.f. for A007556. (End)
D-finite with recurrence +7*n*(7*n+3)*(7*n+4)*(7*n+5)*(7*n+6)*(7*n+8)*(7*n+9)*a(n)-128*(2*n+1)*(4*n+1)*(4*n+3)*(8*n+1)*(8*n+3)*(8*n+5)*(8*n+7)*a(n-1) = 0. - R. J. Mathar, Feb 09 2020
E.g.f.: F([9/8, 5/4, 11/8, 3/2, 13/8, 7/4, 15/8], [1, 10/7, 11/7, 12/7, 13/7, 15/7, 16/7], 16777216*x/823543), where F is the generalized hypergeometric function. - Stefano Spezia, Feb 09 2020

A196678 a(n) = 5*binomial(4*n+5,n)/(4*n+5).

Original entry on oeis.org

1, 5, 30, 200, 1425, 10626, 81900, 647280, 5217300, 42724825, 354465254, 2973052680, 25168220350, 214762810500, 1845308367000, 15951899986272, 138638564739180, 1210677947695620, 10617706139119000, 93477423115076000
Offset: 0

Views

Author

Karol A. Penson, Oct 05 2011

Keywords

Comments

This is a sequence of power moments of the following signed function defined on the segment (0,256/27), in Maple notation:
-(1/2)*sqrt(2)*x^(1/4)*hypergeom([-5/12, -1/12, 5/4], [1/2, 3/4], (27/256)*x)/Pi+(5/4)*sqrt(x)*hypergeom([-1/6, 1/6, 3/2], [3/4, 5/4], (27/256)*x)/Pi-(15/64)*sqrt(2)*x^(3/4)*hypergeom([1/12, 5/12, 7/4], [5/4, 3/2], (27/256)*x)/Pi. This function is not positive on (0,256/27).
The two parameter Fuss-Catalan sequence is A(n,p,r) := r*binomial(n*p + r, n)/(n*p + r). This sequence is A(n,4,5). - Peter Bala, Oct 16 2015

References

  • C. H. Pah, M. R. Wahiddin, Combinatorial Interpretation of Raney Numbers and Tree Enumerations, Open Journal of Discrete Mathematics, 2015, 5, 1-9; http://www.scirp.org/journal/ojdm; http://dx.doi.org/10.4236/ojdm.2015.51001

Crossrefs

Cf. A000108, A002293, A000245 (k = 3), A006629 (k = 4), A233668 (k = 6), A233743 (k = 7), A233835 (k = 8), A234467 (k = 9), A232265 (k = 10), A229963 (k = 11).

Programs

  • Magma
    [5*Binomial(4*n+5,n)/(4*n+5): n in [0..30]]; // Vincenzo Librandi, Oct 07 2011

Formula

O.g.f.: hypergeom([5/4, 3/2, 7/4], [7/3, 8/3], (256 z)/27)
E.g.f.: hypergeom([5/4, 3/2, 7/4], [1, 7/3, 8/3], (256 z)/27)
From _Peter Bala, Oct 16 2015: (Start)
O.g.f. A(x) = 1/x * series reversion (x*C(-x)^5), where C(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. for the Catalan numbers A000108. See cross-references for other Fuss-Catalan sequences with o.g.f. 1/x * series reversion (x*C(-x)^k), k = 3 through 11.
A(x)^(1/5) is the o.g.f. for A002293. (End)
D-finite with recurrence 3*n*(3*n+5)*(3*n+4)*a(n) -8*(4*n+1)*(2*n+1)*(4*n+3)*a(n-1)=0. - R. J. Mathar, Aug 01 2022

Extensions

Offset changed from 1 to 0 and extended by Vincenzo Librandi, Oct 07 2011

A229963 a(n) = 11*binomial(10*n + 11, n)/(10*n + 11) .

Original entry on oeis.org

1, 11, 165, 2860, 53900, 1072797, 22188859, 472214600, 10273141395, 227440759700, 5107663394691, 116068178638776, 2664012608972000, 61668340817988135, 1438101958237201950, 33753007927148177360, 796704536753910327114
Offset: 0

Views

Author

Tim Fulford, Oct 04 2013

Keywords

Comments

Fuss-Catalan sequence is a(n,p,r) = r*binomial(n*p + r,n)/(n*p + r), where p = 10, r = 11.

Crossrefs

Cf. A000245 (k = 3), A006629 (k = 4), A196678 (k = 5), A233668 (k = 6), A233743 (k = 7), A233835 (k = 8), A234467 (k = 9), A232265 (k = 10).

Programs

  • Magma
    [11*Binomial(10*n+11,n)/(10*n+11) : n in [0..20]]; // Vincenzo Librandi, Jan 10 2014
  • Mathematica
    Table[11/(10 n + 11) Binomial[10 n + 11, n], {n, 0, 40}] (* Vincenzo Librandi, Jan 10 2014 *)
  • PARI
    a(n) = 11*binomial(10*n+11,n)/(10*n+11);
    
  • PARI
    {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(10/11))^11+x*O(x^n)); polcoeff(B, n)}
    

Formula

G.f. satisfies: A(x) = {1 + x*A(x)^(p/r)}^r, where p = 10, r = 11.
From _Peter Bala, Oct 16 2015: (Start)
O.g.f. A(x) = 1/x * series reversion (x*C(-x)^11), where C(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. for the Catalan numbers A000108. See cross-references for other Fuss-Catalan sequences with o.g.f. 1/x * series reversion (x*C(-x)^k), k = 3 through 11.
A(x)^(1/11) is the o.g.f. for A059968. (End)
D-finite with recurrence: 81*n*(9*n+11)*(9*n+4)*(3*n+2)*(9*n+8)*(9*n+10)*(3*n+1)*(9*n+5)*(9*n+7)*a(n) -800*(10*n+1)*(5*n+1)*(10*n+3)*(5*n+2)*(2*n+1)*(5*n+3)*(10*n+7)*(5*n+4)*(10*n+9)*a(n-1)=0. - R. J. Mathar, Feb 21 2020

Extensions

Corrected by Vincenzo Librandi, Jan 10 2014

A232265 a(n) = 10*binomial(9*n + 10, n)/(9*n + 10).

Original entry on oeis.org

1, 10, 135, 2100, 35475, 632502, 11714745, 223198440, 4346520750, 86128357150, 1731030945644, 35202562937100, 723029038312230, 14976976398326250, 312522428615310000, 6563314391270476752, 138617681440915119975, 2942332729799060033100, 62735156704285184848950
Offset: 0

Views

Author

Tim Fulford, Dec 28 2013

Keywords

Comments

Fuss-Catalan sequence is a(n,p,r) = r*binomial(n*p + r,n)/(n*p + r), where p = 9, r = 10.

Crossrefs

Cf. A062994, A000245 (k = 3), A006629 (k = 4), A196678 (k = 5), A233668 (k = 6), A233743 (k = 7), A233835 (k = 8), A234467 (k = 9), A229963 (k = 11).

Programs

  • Magma
    [10*Binomial(9*n+10, n)/(9*n+10): n in [0..30]];
  • Mathematica
    Table[10 Binomial[9 n + 10, n]/(9 n + 10), {n, 0, 30}]
  • PARI
    a(n) = 10*binomial(9*n+10,n)/(9*n+10);
    
  • PARI
    {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(9/10))^10+x*O(x^n)); polcoeff(B, n)}
    

Formula

G.f. satisfies: A(x) = {1 + x*A(x)^(p/r)}^r, where p = 9, r = 10.
From _Peter Bala, Oct 16 2015: (Start)
O.g.f. A(x) = 1/x * series reversion (x*C(-x)^10), where C(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. for the Catalan numbers A000108. See cross-references for other Fuss-Catalan sequences with o.g.f. 1/x * series reversion (x*C(-x)^k), k = 3 through 11.
A(x)^(1/10) is the o.g.f. for A062994. (End)
D-finite with recurrence: 128*n*(8*n+3)*(4*n+3)*(8*n+9)*(2*n+1)*(8*n+7)*(4*n+5)*(8*n+5)*a(n) -81*(9*n+2)*(9*n+4)*(3*n+2)*(9*n+8)*(9*n+1)*(3*n+1)*(9*n+5)*(9*n+7)*a(n-1)=0. - R. J. Mathar, Feb 21 2020

A233835 a(n) = 8*binomial(7*n + 8, n)/(7*n + 8).

Original entry on oeis.org

1, 8, 84, 1008, 13090, 179088, 2542512, 37106784, 553270671, 8391423040, 129058047580, 2008018827360, 31550226597162, 499892684834368, 7978140653296800, 128138773298754240, 2069603881026760323, 33593111381834512200, 547698081896206040800, 8965330544164089648000, 147285313888568167177866
Offset: 0

Views

Author

Tim Fulford, Dec 16 2013

Keywords

Comments

Fuss-Catalan sequence is a(n,p,r) = r*binomial(n*p + r, n)/(n*p + r); this is the case p = 7, r = 8.

Crossrefs

Cf. A000245 (k = 3), A006629 (k = 4), A196678 (k = 5), A233668 (k = 6), A233743 (k = 7), A234467 (k = 9), A232265 (k = 10), A229963 (k = 11).

Programs

  • Magma
    [8*Binomial(7*n+8, n)/(7*n+8): n in [0..30]];
  • Mathematica
    Table[8 Binomial[7 n + 8, n]/(7 n + 8), {n, 0, 30}]
  • PARI
    a(n) = 8*binomial(7*n+8,n)/(7*n+8);
    
  • PARI
    {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(7/8))^8+x*O(x^n)); polcoeff(B, n)}
    

Formula

G.f. satisfies: A(x) = {1 + x*A(x)^(p/r)}^r, where p = 7, r = 8.
From _Peter Bala, Oct 16 2015: (Start)
O.g.f. A(x) = 1/x * series reversion (x*C(-x)^8), where C(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. for the Catalan numbers A000108. See cross-references for other Fuss-Catalan sequences with o.g.f. 1/x * series reversion (x*C(-x)^k), k = 3 through 11.
A(x)^(1/8) is the o.g.f. for A002296. (End)

A233668 a(n) = 6*binomial(5*n + 6,n)/(5*n + 6).

Original entry on oeis.org

1, 6, 45, 380, 3450, 32886, 324632, 3290040, 34034715, 357919100, 3815041230, 41124015036, 447534498320, 4910258796240, 54257308779600, 603260892430960, 6744185681876505, 75764901779438850, 854867886710698755, 9683529727259434200
Offset: 0

Views

Author

Tim Fulford, Dec 14 2013

Keywords

Comments

Fuss-Catalan sequence is a(n,p,r) = r*binomial(n*p + r, n)/(n*p + r); this is the case p = 5, r = 6.

References

  • C. H. Pah, M. R. Wahiddin, Combinatorial Interpretation of Raney Numbers and Tree Enumerations, Open Journal of Discrete Mathematics, 2015, 5, 1-9; http://www.scirp.org/journal/ojdm; http://dx.doi.org/10.4236/ojdm.2015.51001

Crossrefs

Cf. A000245 (k = 3), A006629 (k = 4), A196678 (k = 5), A233743 (k = 7), A233835 (k = 8), A234467 (k = 9), A232265 (k = 10), A229963 (k = 11).

Programs

  • Magma
    [6*Binomial(5*n+6,n)/(5*n+6): n in [0..30]];
  • Mathematica
    Table[6 Binomial[5 n + 6, n]/(5 n + 6), {n, 0, 30}]
  • PARI
    a(n) = 6*binomial(5*n+6,n)/(5*n+6);
    
  • PARI
    {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(5/6))^6+x*O(x^n)); polcoeff(B, n)}
    

Formula

G.f. satisfies: A(x) = {1 + x*A(x)^(p/r)}^r, here p = 5, r = 6.
From _Peter Bala, Oct 16 2015: (Start)
O.g.f. A(x) = 1/x * series reversion (x*C(-x)^6), where C(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. for the Catalan numbers A000108. See cross-references for other Fuss-Catalan sequences with o.g.f. 1/x * series reversion (x*C(-x)^k), k = 3 through 11.
A(x)^(1/6) is the o.g.f. for A002294. (End)
D-finite with recurrence 8*n*(4*n+5)*(2*n+3)*(4*n+3)*a(n) -5*(5*n+1)*(5*n+2)*(5*n+3)*(5*n+4)*a(n-1)=0. - R. J. Mathar, Nov 22 2024

A233827 a(n) = 8*binomial(6*n+8,n)/(6*n+8).

Original entry on oeis.org

1, 8, 76, 800, 8990, 105672, 1283464, 15981504, 202927725, 2617624680, 34206162848, 451872681728, 6024664312030, 80964348872400, 1095590286231120, 14915165412813184, 204140673966231870, 2807362363541687280, 38772186055550141700
Offset: 0

Views

Author

Tim Fulford, Dec 16 2013

Keywords

Comments

Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), this is the case p=6, r=8.

Crossrefs

Programs

  • Magma
    [8*Binomial(6*n+8, n)/(6*n+8): n in [0..30]];
  • Mathematica
    Table[8 Binomial[6 n + 8, n]/(6 n + 8), {n, 0, 30}]
  • PARI
    a(n) = 8*binomial(6*n+8,n)/(6*n+8);
    
  • PARI
    {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(6/8))^8+x*O(x^n)); polcoeff(B, n)}
    

Formula

G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, where p=6, r=8.
From Ilya Gutkovskiy, Sep 14 2018: (Start)
E.g.f.: 5F5(4/3,3/2,5/3,11/6,13/6; 1,9/5,11/5,12/5,13/5; 46656*x/3125).
a(n) ~ 3^(6*n+15/2)*4^(3*n+5)/(sqrt(Pi)*5^(5*n+17/2)*n^(3/2)). (End)
D-finite with recurrence 5*n*(5*n+6)*(5*n+7)*(5*n+8)*(5*n+4)*a(n) -72*(6*n+5)*(3*n+2)*(2*n+1)*(3*n+1)*(6*n+7)*a(n-1)=0. - R. J. Mathar, Nov 22 2024

A233829 a(n) = 3*binomial(6*n+9,n)/(2*n+3).

Original entry on oeis.org

1, 9, 90, 975, 11160, 132867, 1629012, 20430900, 260907075, 3381098545, 44352058608, 587787511779, 7858257798300, 105855415586550, 1435361957277480, 19576154604317304, 268364706225271110, 3695862686045572350, 51108790709588823150
Offset: 0

Views

Author

Tim Fulford, Dec 16 2013

Keywords

Comments

Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), this is the case p=6, r=9.

Crossrefs

Programs

  • Magma
    [3*Binomial(6*n+9, n)/(2*n+3): n in [0..30]];
  • Mathematica
    Table[3 Binomial[6 n + 9, n]/(2 n + 3), {n, 0, 30}]
  • PARI
    a(n) = 3*binomial(6*n+9,n)/(2*n+3);
    
  • PARI
    {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(2/3))^9+x*O(x^n)); polcoeff(B, n)}
    

Formula

G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, where p=6, r=9.
From Ilya Gutkovskiy, Sep 14 2018: (Start)
E.g.f.: 5F5(3/2,5/3,11/6,13/6,7/3; 1,11/5,12/5,13/5,14/5; 46656*x/3125).
a(n) ~ 3^(6*n+21/2)*4^(3*n+4)/(sqrt(Pi)*5^(5*n+19/2)*n^(3/2)). (End)

A233830 a(n) = 5*binomial(6*n+10,n)/(3*n+5).

Original entry on oeis.org

1, 10, 105, 1170, 13640, 164502, 2036265, 25727800, 330482295, 4303216330, 56672074888, 753573733050, 10103474312100, 136435868978220, 1854009194816745, 25333847134998864, 347880174736462550, 4798137522234602700, 66441427922465470095, 923346006310186106010, 12873823246049001482400
Offset: 0

Views

Author

Tim Fulford, Dec 16 2013

Keywords

Comments

Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), this is the case p=6, r=10.

Crossrefs

Programs

  • Magma
    [5*Binomial(6*n+10, n)/(3*n+5): n in [0..30]];
  • Mathematica
    Table[5 Binomial[6 n + 10, n]/(3 n + 5), {n, 0, 30}]
  • PARI
    a(n) = 5*binomial(6*n+10,n)/(3*n+5);
    
  • PARI
    {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(3/5))^10+x*O(x^n)); polcoeff(B, n)}
    

Formula

G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, here p=6, r=10.
From Ilya Gutkovskiy, Sep 14 2018: (Start)
E.g.f.: 6F6(5/3,11/6,2,13/6,7/3,5/2; 1,11/5,12/5,13/5,14/5,3; 46656*x/3125).
a(n) ~ 3^(6*n+19/2)*4^(3*n+5)/(sqrt(Pi)*5^(5*n+19/2)*n^(3/2)). (End)
Showing 1-9 of 9 results.