A229963
a(n) = 11*binomial(10*n + 11, n)/(10*n + 11) .
Original entry on oeis.org
1, 11, 165, 2860, 53900, 1072797, 22188859, 472214600, 10273141395, 227440759700, 5107663394691, 116068178638776, 2664012608972000, 61668340817988135, 1438101958237201950, 33753007927148177360, 796704536753910327114
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- J-C. Aval, Multivariate Fuss-Catalan Numbers, arXiv:0711.0906 [math.CO], 2007.
- J-C. Aval, Multivariate Fuss-Catalan Numbers, Discrete Math., 308 (2008), 4660-4669.
- Thomas A. Dowling, Catalan Numbers Chapter 7
- Wojciech Mlotkowski, Fuss-Catalan Numbers in Noncommutative Probability, Docum. Mathm. 15: 939-955.
- Wikipedia, Fuss-Catalan number
-
[11*Binomial(10*n+11,n)/(10*n+11) : n in [0..20]]; // Vincenzo Librandi, Jan 10 2014
-
Table[11/(10 n + 11) Binomial[10 n + 11, n], {n, 0, 40}] (* Vincenzo Librandi, Jan 10 2014 *)
-
a(n) = 11*binomial(10*n+11,n)/(10*n+11);
-
{a(n)=local(B=1); for(i=0, n, B=(1+x*B^(10/11))^11+x*O(x^n)); polcoeff(B, n)}
A234571
a(n) = 4*binomial(10*n+8,n)/(5*n+4).
Original entry on oeis.org
1, 8, 108, 1776, 32430, 632016, 12876864, 270964320, 5843355957, 128462407840, 2868356980060, 64869895026144, 1482877843096650, 34207542810153216, 795318309360948240, 18617396126132233920, 438423206616057162258, 10379232525028947311160, 246878659984195222962220
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- J-C. Aval, Multivariate Fuss-Catalan Numbers, arXiv:0711.0906v1, Discrete Math., 308 (2008), 4660-4669.
- Thomas A. Dowling, Catalan Numbers Chapter 7
- Wojciech Mlotkowski, Fuss-Catalan Numbers in Noncommutative Probability, Docum. Mathm. 15: 939-955.
- Wikipedia, Fuss-Catalan number
Cf.
A059968,
A234525,
A234526,
A234527,
A234528,
A234529,
A234570,
A234573,
A059968,
A069271,
A118970,
A212073,
A233834,
A234465,
A234510,
A235339.
-
[4*Binomial(10*n+8, n)/(5*n+4): n in [0..30]];
-
Table[4 Binomial[10 n + 8, n]/(5 n + 4), {n, 0, 30}]
-
a(n) = 4*binomial(10*n+8,n)/(5*n+4);
-
{a(n)=local(B=1); for(i=0, n, B=(1+x*B^(5/4))^8+x*O(x^n)); polcoeff(B, n)}
A234573
a(n) = 9*binomial(10*n+9,n)/(10*n+9).
Original entry on oeis.org
1, 9, 126, 2109, 38916, 763686, 15636192, 330237765, 7141879503, 157366449604, 3520256293710, 79735912636302, 1825080422272800, 42148579533938784, 980892581545169496, 22980848343194476245, 541581608172776494554, 12829884648994115426295, 305349921559399354716430
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- J-C. Aval, Multivariate Fuss-Catalan Numbers, arXiv:0711.0906 [math.CO], 2007; Discrete Math., 308 (2008), 4660-4669.
- Thomas A. Dowling, Catalan Numbers Chapter 7.
- Elżbieta Liszewska and Wojciech Młotkowski, Some relatives of the Catalan sequence, arXiv:1907.10725 [math.CO], 2019.
- Wojciech Mlotkowski, Fuss-Catalan Numbers in Noncommutative Probability, Docum. Mathm. 15: 939-955.
- J. Sawada, J. Sears, A. Trautrim, and A. Williams, Demystifying our Grandparent's De Bruijn Sequences with Concatenation Trees, arXiv:2308.12405 [math.CO], 2023.
Cf.
A000108,
A059968,
A118971,
A130564,
A234513,
A234525,
A234526,
A234527,
A234528,
A234529,
A234570,
A234571,
A229963.
-
[9*Binomial(10*n+9, n)/(10*n+9): n in [0..30]];
-
Table[9 Binomial[10 n + 9, n]/(10 n + 9), {n, 0, 30}]
-
a(n) = 9*binomial(10*n+9,n)/(10*n+9);
-
{a(n)=local(B=1); for(i=0, n, B=(1+x*B^(10/9))^9+x*O(x^n)); polcoeff(B, n)}
A234527
2*binomial(10*n+4,n)/(5*n+2).
Original entry on oeis.org
1, 4, 46, 704, 12341, 234260, 4685898, 97274544, 2075959314, 45262862788, 1003884090440, 22577660493024, 513698787408521, 11802947663348800, 273471432969603198, 6382396843322710560, 149902629054480517590, 3540479504783000035464
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- J-C. Aval, Multivariate Fuss-Catalan Numbers, arXiv:0711.0906v1, Discrete Math., 308 (2008), 4660-4669.
- Thomas A. Dowling, Catalan Numbers Chapter 7
- Wojciech Mlotkowski, Fuss-Catalan Numbers in Noncommutative Probability, Docum. Mathm. 15: 939-955.
-
[2*Binomial(10*n+4, n)/(5*n+2): n in [0..30]]; // Vincenzo Librandi, Dec 28 2013
-
Table[2 Binomial[10 n + 4, n]/(5 n + 2), {n, 0, 30}] (* Vincenzo Librandi, Dec 28 2013 *)
-
a(n) = 2*binomial(10*n+4,n)/(5*n+2);
-
{a(n)=local(B=1); for(i=0, n, B=(1+x*B^(5/2))^4+x*O(x^n)); polcoeff(B, n)}
A364338
G.f. satisfies A(x) = (1 + x) * (1 + x*A(x)^5).
Original entry on oeis.org
1, 2, 11, 105, 1140, 13555, 170637, 2235472, 30161255, 416248640, 5848462880, 83378361111, 1203100853951, 17537182300140, 257858115407535, 3819894878557990, 56958234329850060, 854192593184162160, 12875579347191388830, 194963091634569681550, 2964229359714424159370, 45234864131654311730160
Offset: 0
-
terms = 22; A[] = 0; Do[A[x] = (1+x)(1+x*A[x]^5) + O[x]^terms // Normal, terms]; CoefficientList[A[x], x] (* Stefano Spezia, Mar 24 2025 *)
-
a(n) = sum(k=0, n, binomial(5*k+1, k)*binomial(5*k+1, n-k)/(5*k+1));
A234526
3*binomial(10*n+3,n)/(10*n+3).
Original entry on oeis.org
1, 3, 33, 496, 8610, 162435, 3235501, 66959532, 1425658806, 31026962395, 687124547340, 15434728080408, 350818684083868, 8053515040969200, 186457795206547635, 4348790005989493960, 102080931442008205230, 2409777235191897422982
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- J-C. Aval, Multivariate Fuss-Catalan Numbers, arXiv:0711.0906v1, Discrete Math., 308 (2008), 4660-4669.
- Thomas A. Dowling, Catalan Numbers Chapter 7
- Wojciech Mlotkowski, Fuss-Catalan Numbers in Noncommutative Probability, Docum. Mathm. 15: 939-955.
-
[3*Binomial(10*n+3, n)/(10*n+3): n in [0..30]]; // Vincenzo Librandi, Dec 28 2013
-
Table[3 Binomial[10 n + 3, n]/(10 n + 3), {n, 0, 30}] (* Vincenzo Librandi, Dec 28 2013 *)
-
a(n) = 3*binomial(10*n+3,n)/(10*n+3);
-
{a(n)=local(B=1); for(i=0, n, B=(1+x*B^(10/3))^3+x*O(x^n)); polcoeff(B, n)}
A234528
Binomial(10*n+5,n)/(2*n+1).
Original entry on oeis.org
1, 5, 60, 935, 16555, 316251, 6353760, 132321990, 2830853610, 61841702065, 1373736123760, 30935736733230, 704631080073635, 16204866668942000, 375762274309378440, 8775795659568727020, 206241872189050376550, 4873761343609509542490
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- J-C. Aval, Multivariate Fuss-Catalan Numbers, arXiv:0711.0906v1, Discrete Math., 308 (2008), 4660-4669.
- Thomas A. Dowling, Catalan Numbers Chapter 7
- Wojciech Mlotkowski, Fuss-Catalan Numbers in Noncommutative Probability, Docum. Mathm. 15: 939-955.
-
[Binomial(10*n+5, n)/(2*n+1): n in [0..30]]; // Vincenzo Librandi, Dec 28 2013
-
Table[Binomial[10 n + 5, n]/(2 n + 1), {n, 0, 30}] (* Vincenzo Librandi, Dec 28 2013 *)
-
a(n) = binomial(10*n+5,n)/(2*n+1);
-
{a(n)=local(B=1); for(i=0, n, B=(1+x*B^2)^5+x*O(x^n)); polcoeff(B, n)}
A234529
3*binomial(10*n+6,n)/(5*n+3).
Original entry on oeis.org
1, 6, 75, 1190, 21285, 409266, 8259888, 172593900, 3701885490, 81033954430, 1803028662435, 40658396849388, 927146157991625, 21342995124948000, 495322997953271580, 11576581508367256920, 272239271289546497046, 6437043284012559773100
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- J-C. Aval, Multivariate Fuss-Catalan Numbers, arXiv:0711.0906v1, Discrete Math., 308 (2008), 4660-4669.
- Thomas A. Dowling, Catalan Numbers Chapter 7
- Wojciech Mlotkowski, Fuss-Catalan Numbers in Noncommutative Probability, Docum. Mathm. 15: 939-955.
-
[3*Binomial(10*n+6, n)/(5*n+3): n in [0..30]]; // Vincenzo Librandi, Dec 27 2013
-
Table[3 Binomial[10 n + 6, n]/(5 n + 3), {n, 0, 30}] (* Vincenzo Librandi, Dec 27 2013 *)
-
a(n) = 3*binomial(10*n+6,n)/(5*n+3);
-
{a(n)=local(B=1); for(i=0, n, B=(1+x*B^(5/3))^6+x*O(x^n)); polcoeff(B, n)}
A234570
7*binomial(10*n+7,n)/(10*n+7).
Original entry on oeis.org
1, 7, 91, 1470, 26565, 514206, 10426416, 218618940, 4701550770, 103134123820, 2298706645235, 51909777109596, 1185134654128425, 27309853977084000, 634361032466470620, 14837590383963667320, 349163392095422769942, 8260872214482785042145, 196380752260155290992675
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- J-C. Aval, Multivariate Fuss-Catalan Numbers, arXiv:0711.0906v1, Discrete Math., 308 (2008), 4660-4669.
- Thomas A. Dowling, Catalan Numbers Chapter 7
- Wojciech Mlotkowski, Fuss-Catalan Numbers in Noncommutative Probability, Docum. Mathm. 15: 939-955.
-
[7*Binomial(10*n+7, n)/(10*n+7): n in [0..30]];
-
Table[7 Binomial[10 n + 7, n]/(10 n + 7), {n, 0, 30}]
-
a(n) = 7*binomial(10*n+7,n)/(10*n+7);
-
{a(n)=local(B=1); for(i=0, n, B=(1+x*B^(10/7))^7+x*O(x^n)); polcoeff(B, n)}
A364335
G.f. satisfies A(x) = (1 + x*A(x)^3) * (1 + x*A(x)^5).
Original entry on oeis.org
1, 2, 17, 204, 2852, 43489, 701438, 11767095, 203223146, 3589167533, 64524575635, 1176860764416, 21723084076739, 405038036077647, 7617437252889030, 144328483391622298, 2752414654270742784, 52790626691557217602, 1017655117382823639414, 19706520281177438174530
Offset: 0
-
a(n) = sum(k=0, n, binomial(3*n+2*k+1, k)*binomial(3*n+2*k+1, n-k)/(3*n+2*k+1));
Showing 1-10 of 10 results.
Comments