cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A118971 a(n) = binomial(5*n+3,n)/(n+1).

Original entry on oeis.org

1, 4, 26, 204, 1771, 16380, 158224, 1577532, 16112057, 167710664, 1772645420, 18974357220, 205263418941, 2240623268512, 24648785802336, 272994644359580, 3041495503591365, 34064252968167180, 383302465665133014
Offset: 0

Views

Author

Paul Barry, May 07 2006

Keywords

Comments

A quadrisection of A118968.
For n >= 1, a(n-1) is the number of lattice paths from (0,0) to (4n,n) using only the steps (1,0) and (0,1) and which stay strictly below the line y = x/4 except at the path's endpoints. - Lucas A. Brown, Aug 21 2020
This is instance k = 4 of the family {c(k, n+1)}A130564.%20-%20_Wolfdieter%20Lang">{n>=0} given in a comment in A130564. - _Wolfdieter Lang, Feb 04 2024

Crossrefs

Cf. A000108, A006013, A006632, A130564, A130565, A234466, A234513, A234573, A235340 (members of the same family).

Programs

  • Mathematica
    Table[4*Binomial[5n+3,n]/(4n+4),{n,0,30}] (* Harvey P. Dale, Apr 09 2012 *)

Formula

G.f.: If the inverse series of y*(1-y)^4 is G(x) then A(x)=G(x)/x.
D-finite with recurrence 8*(4*n+1)*(2*n+1)*(4*n+3)*(n+1)*a(n) -5*(5*n+1)*(5*n+2)*(5*n+3)*(5*n-1)*a(n-1)=0. - R. J. Mathar, Nov 26 2012
a(n) = (4/5)*binomial(5*(n+1),n+1)/(5*(n+1)-1). - Bruno Berselli, Jan 17 2014
E.g.f.: 4F4(4/5,6/5,7/5,8/5; 5/4,3/2,7/4,2; 3125*x/256). - Ilya Gutkovskiy, Jan 23 2018
G.f.: 5F4([4,5,6,7,8]/5, [5,6,7,8]/4; (5^5/4^4)*x) = (4/(5*x))*(1 - 4F3([-1,1,2,3]/5, [1,2,3]/4; (5^5/4^4)*x)). - Wolfdieter Lang, Feb 15 2024

A130564 Member k=5 of a family of generalized Catalan numbers.

Original entry on oeis.org

1, 5, 40, 385, 4095, 46376, 548340, 6690585, 83615350, 1064887395, 13770292256, 180320238280, 2386316821325, 31864803599700, 428798445360120, 5809228810425801, 79168272296871450, 1084567603590147950
Offset: 1

Views

Author

Wolfdieter Lang, Jul 13 2007

Keywords

Comments

The generalized Catalan numbers C(k,n):= binomial(k*n+1,n)/(k*n+1) become for negative k=-|k|, with |k|>=2, ((-1)^(n-1))*binomial((|k|+1)*n-2,n)/(|k|*n-1), n>=0.
The family c(k,n):=binomial((k+1)*n-2,n)/(k*n-1), n>=1, has the members A000108, A006013, A006632, A118971 for k=1,2,3,4, respectively (but the offset there is 0).
The members of the C(k,n) family for positive k are: A000012 (powers of 1), A000108, A001764, A002293, A002294, A002295, A002296, A007556, A062994, for k=1..9.

References

  • Ronald L. Graham, Donald E. Knuth and Oren Patashnik, Concrete Mathematics, Addison-Wesley, Reading, MA, 2nd ed. 1994, pp. 200, 363.

Crossrefs

Programs

  • Mathematica
    Rest@ CoefficientList[InverseSeries[Series[y (1 - y)^5, {y, 0, 18}], x], x] (* Michael De Vlieger, Oct 13 2019 *)

Formula

a(n) = binomial((k+1)*n-2,n)/(k*n-1), with k=5.
G.f.: inverse series of y*(1-y)^5.
a(n) = (5/6)*binomial(6*n,n)/(6*n-1). [Bruno Berselli, Jan 17 2014]
From Wolfdieter Lang, Feb 06 2020: (Start)
G.f.: (5/6)*(1 - hypergeom([-1, 1, 2, 3, 4]/6, [1, 2, 3, 4]/5,(6^6/5^5)*x)).
E.g.f.: (5/6)*(1 - hypergeom([-1, 1, 2, 3, 4]/6, [1, 2, 3, 4, 5]/5,(6^6/5^5)*x)). (End)
D-finite with recurrence 5*n*(5*n-4)*(5*n-3)*(5*n-2)*(5*n-1)*a(n) -72*(6*n-7)*(3*n-1)*(2*n-1)*(3*n-2)*(6*n-5)*a(n-1)=0. - R. J. Mathar, May 07 2021

A232265 a(n) = 10*binomial(9*n + 10, n)/(9*n + 10).

Original entry on oeis.org

1, 10, 135, 2100, 35475, 632502, 11714745, 223198440, 4346520750, 86128357150, 1731030945644, 35202562937100, 723029038312230, 14976976398326250, 312522428615310000, 6563314391270476752, 138617681440915119975, 2942332729799060033100, 62735156704285184848950
Offset: 0

Views

Author

Tim Fulford, Dec 28 2013

Keywords

Comments

Fuss-Catalan sequence is a(n,p,r) = r*binomial(n*p + r,n)/(n*p + r), where p = 9, r = 10.

Crossrefs

Cf. A062994, A000245 (k = 3), A006629 (k = 4), A196678 (k = 5), A233668 (k = 6), A233743 (k = 7), A233835 (k = 8), A234467 (k = 9), A229963 (k = 11).

Programs

  • Magma
    [10*Binomial(9*n+10, n)/(9*n+10): n in [0..30]];
  • Mathematica
    Table[10 Binomial[9 n + 10, n]/(9 n + 10), {n, 0, 30}]
  • PARI
    a(n) = 10*binomial(9*n+10,n)/(9*n+10);
    
  • PARI
    {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(9/10))^10+x*O(x^n)); polcoeff(B, n)}
    

Formula

G.f. satisfies: A(x) = {1 + x*A(x)^(p/r)}^r, where p = 9, r = 10.
From _Peter Bala, Oct 16 2015: (Start)
O.g.f. A(x) = 1/x * series reversion (x*C(-x)^10), where C(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. for the Catalan numbers A000108. See cross-references for other Fuss-Catalan sequences with o.g.f. 1/x * series reversion (x*C(-x)^k), k = 3 through 11.
A(x)^(1/10) is the o.g.f. for A062994. (End)
D-finite with recurrence: 128*n*(8*n+3)*(4*n+3)*(8*n+9)*(2*n+1)*(8*n+7)*(4*n+5)*(8*n+5)*a(n) -81*(9*n+2)*(9*n+4)*(3*n+2)*(9*n+8)*(9*n+1)*(3*n+1)*(9*n+5)*(9*n+7)*a(n-1)=0. - R. J. Mathar, Feb 21 2020

A234510 a(n) = 7*binomial(9*n+7,n)/(9*n+7).

Original entry on oeis.org

1, 7, 84, 1232, 20090, 349860, 6371764, 119877472, 2311664355, 45448324110, 907580289616, 18358110017520, 375353605696524, 7744997102466932, 161070300819384000, 3372697621463787456, 71046594621639707245, 1504569659175026591805
Offset: 0

Views

Author

Tim Fulford, Dec 27 2013

Keywords

Comments

Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), where p = 9, r = 7.

Crossrefs

Programs

  • Magma
    [7*Binomial(9*n+7, n)/(9*n+7): n in [0..30]]; // Vincenzo Librandi, Dec 27 2013
  • Mathematica
    Table[7 Binomial[9 n + 7, n]/(9 n + 7), {n, 0, 40}] (* Vincenzo Librandi, Dec 27 2013 *)
  • PARI
    a(n) = 7*binomial(9*n+7,n)/(9*n+7);
    
  • PARI
    {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(9/7))^7+x*O(x^n)); polcoeff(B, n)}
    

Formula

G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, where p = 9, r = 7.
O.g.f. A(x) = 1/x * series reversion (x/C(x)^7), where C(x) is the o.g.f. for the Catalan numbers A000108. A(x)^(1/7) is the o.g.f. for A062994. - Peter Bala, Oct 14 2015

A234573 a(n) = 9*binomial(10*n+9,n)/(10*n+9).

Original entry on oeis.org

1, 9, 126, 2109, 38916, 763686, 15636192, 330237765, 7141879503, 157366449604, 3520256293710, 79735912636302, 1825080422272800, 42148579533938784, 980892581545169496, 22980848343194476245, 541581608172776494554, 12829884648994115426295, 305349921559399354716430
Offset: 0

Views

Author

Tim Fulford, Dec 28 2013

Keywords

Comments

Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), where p=10, r=9.

Crossrefs

Programs

  • Magma
    [9*Binomial(10*n+9, n)/(10*n+9): n in [0..30]];
  • Mathematica
    Table[9 Binomial[10 n + 9, n]/(10 n + 9), {n, 0, 30}]
  • PARI
    a(n) = 9*binomial(10*n+9,n)/(10*n+9);
    
  • PARI
    {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(10/9))^9+x*O(x^n)); polcoeff(B, n)}
    

Formula

G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, where p=10, r=9.
From Wolfdieter Lang, Feb 06 2020: (Start)
G.f.: hypergeom([9, 10, ..., 18]/10, [10, 11, ..., 18]/9, (10^10/9^9)*x).
E.g.f.: hypergeom([9, 11, 12, ..., 18]/10, [10, 11, ..., 18]/9, (10^10/9^9) * x). Cf. Ilya Gutkovsky in A118971. (End)
a(n) = binomial(10*n + 8 , n+1)/(9*n + 8) which is instance k = 9 of c(k, n+1) given in a comment in A130564. x*B(x), with the above given g.f. B(x), is the compositional inverse of y*(1 - y)^9, hence B(x)*(1 - x*B(x))^9 = 1. For another formula for B(x) involving the hypergeometric function 9F8 see the analog formula in A234513. - Wolfdieter Lang, Feb 15 2024

A251579 E.g.f.: exp(9*x*G(x)^8) / G(x)^8 where G(x) = 1 + x*G(x)^9 is the g.f. of A062994.

Original entry on oeis.org

1, 1, 9, 225, 10017, 656289, 57255849, 6262226721, 825067217025, 127305462542913, 22527254639457801, 4498536675388410081, 1000890043482114644769, 245556248365681036646625, 65862976584851401437170217, 19174678419336874098038167329, 6022064808176665662053835550209
Offset: 0

Views

Author

Paul D. Hanna, Dec 06 2014

Keywords

Examples

			E.g.f.: A(x) = 1 + x + 9*x^2/2! + 225*x^3/3! + 10017*x^4/4! + 656289*x^5/5! +...
such that A(x) = exp(9*x*G(x)^8) / G(x)^8
where G(x) = 1 + x*G(x)^9 is the g.f. of A062994:
G(x) = 1 + x + 9*x^2 + 117*x^3 + 1785*x^4 + 29799*x^5 + 527085*x^6 +...
Note that
A'(x) = exp(9*x*G(x)^8) = 1 + 9*x + 225*x^2/2! + 10017*x^3/3! +...
LOGARITHMIC DERIVATIVE.
The logarithm of the e.g.f. begins:
log(A(x)) = x + 8*x^2/2 + 200*x^3/3 + 8976*x^4/4 + 592368*x^5/5 +...
and so A'(x)/A(x) = G(x)^8.
TABLE OF POWERS OF E.G.F.
Form a table of coefficients of x^k/k! in A(x)^n as follows.
n=1: [1, 1,   9,  225,  10017,   656289,  57255849,  6262226721, ...];
n=2: [1, 2,  20,  504,  22320,  1453248, 126104256, 13731880320, ...];
n=3: [1, 3,  33,  843,  37233,  2411667, 208241361, 22581193851, ...];
n=4: [1, 4,  48, 1248,  55104,  3554496, 305558784, 33002857728, ...];
n=5: [1, 5,  65, 1725,  76305,  4906965, 420159825, 45211985325, ...];
n=6: [1, 6,  84, 2280, 101232,  6496704, 554376384, 59448214656, ...];
n=7: [1, 7, 105, 2919, 130305,  8353863, 710786601, 75977951175, ...];
n=8: [1, 8, 128, 3648, 163968, 10511232, 892233216, 95096756736, ...]; ...
in which the main diagonal begins (see A251587):
[1, 2, 33, 1248, 76305, 6496704, 710786601, 95096756736, ...]
and is given by the formula:
[x^n/n!] A(x)^(n+1) = 9^(n-7) * (n+1)^(n-8) * (262144*n^7 + 2494464*n^6 + 10470208*n^5 + 25229505*n^4 + 37857568*n^3 + 35537670*n^2 + 19414368*n + 4782969) for n>=0.
		

Crossrefs

Programs

  • Mathematica
    Flatten[{1,1,Table[Sum[9^k * n!/k! * Binomial[9*n-k-9, n-k] * (k-1)/(n-1),{k,0,n}],{n,2,20}]}] (* Vaclav Kotesovec, Dec 07 2014 *)
  • PARI
    {a(n) = local(G=1);for(i=1,n,G=1+x*G^9 +x*O(x^n)); n!*polcoeff(exp(9*x*G^8)/G^8, n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n) = if(n==0|n==1, 1, sum(k=0, n, 9^k * n!/k! * binomial(9*n-k-9,n-k) * (k-1)/(n-1) ))}
    for(n=0, 20, print1(a(n), ", "))

Formula

Let G(x) = 1 + x*G(x)^9 be the g.f. of A062994, then the e.g.f. A(x) of this sequence satisfies:
(1) A'(x)/A(x) = G(x)^8.
(2) A'(x) = exp(8*x*G(x)^8).
(3) A(x) = exp( Integral G(x)^8 dx ).
(4) A(x) = exp( Sum_{n>=1} A234513(n-1)*x^n/n ), where A234513(n-1) = binomial(9*n-2,n)/(8*n-1).
(5) A(x) = F(x/A(x)) where F(x) is the e.g.f. of A251589.
(6) A(x) = Sum_{n>=0} A251589(n)*(x/A(x))^n/n! and
(7) [x^n/n!] A(x)^(n+1) = (n+1)*A251589(n),
where A251589(n) = 9^(n-7) * (n+1)^(n-9) * (262144*n^7 + 2494464*n^6 + 10470208*n^5 + 25229505*n^4 + 37857568*n^3 + 35537670*n^2 + 19414368*n + 4782969).
a(n) = Sum_{k=0..n} 9^k * n!/k! * binomial(9*n-k-9, n-k) * (k-1)/(n-1) for n>1.
Recurrence: 128*(2*n-3)*(4*n-7)*(4*n-5)*(8*n-15)*(8*n-13)*(8*n-11)*(8*n-9)*(59049*n^7 - 1102248*n^6 + 8858079*n^5 - 39764115*n^4 + 107806473*n^3 - 176772075*n^2 + 162618742*n - 64907105)*a(n) = 81*(282429536481*n^15 - 8943601988565*n^14 + 132044525265870*n^13 - 1206188364304287*n^12 + 7627178203628841*n^11 - 35382975568258428*n^10 + 124478964551078775*n^9 - 338415281830783431*n^8 + 717436315214480025*n^7 - 1187215577095780764*n^6 + 1522794566607803919*n^5 - 1488866286016780047*n^4 + 1075889068341959448*n^3 - 543536112365518695*n^2 + 172059320987344825*n - 25799292366848000)*a(n-1) - 387420489*(59049*n^7 - 688905*n^6 + 3484620*n^5 - 9940725*n^4 + 17352558*n^3 - 18650247*n^2 + 11527801*n - 3203200)*a(n-2). - Vaclav Kotesovec, Dec 07 2014
a(n) ~ 9^(9*(n-1)-1/2) / 8^(8*(n-1)-1/2) * n^(n-2) / exp(n-1). - Vaclav Kotesovec, Dec 07 2014

A234505 a(n) = 2*binomial(9*n+2,n)/(9*n+2).

Original entry on oeis.org

1, 2, 19, 252, 3885, 65274, 1159587, 21421248, 407337153, 7920326700, 156753610013, 3147328992080, 63951322669065, 1312575792628356, 27172514322677625, 566707337222428800, 11896007334177739113, 251142622845893276190, 5328891499524964282170
Offset: 0

Views

Author

Tim Fulford, Dec 27 2013

Keywords

Comments

Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), where p=9, r=2.

Crossrefs

Programs

  • Magma
    [2*Binomial(9*n+2, n)/(9*n+2): n in [0..30]];
  • Mathematica
    Table[2 Binomial[9 n + 2, n]/(9 n + 2), {n, 0, 30}]
  • PARI
    a(n) = 2*binomial(9*n+2,n)/(9*n+2);
    
  • PARI
    {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(9/2))^2+x*O(x^n)); polcoeff(B, n)}
    

Formula

G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, where p=9, r=2.
a(n) = 2*binomial(9n+1,n-1)/n for n>0, a(0)=1. [Bruno Berselli, Jan 19 2014]

A234507 4*binomial(9*n+4,n)/(9*n+4).

Original entry on oeis.org

1, 4, 42, 580, 9139, 155664, 2791404, 51919296, 992414925, 19375620264, 384734333698, 7745767624560, 157746595917027, 3243956787596560, 67267249849483200, 1404952651131292800, 29529506061314207361, 624113938377564174540, 13256095235994257535900, 282803564653982441429256, 6057302574889055180495805
Offset: 0

Views

Author

Tim Fulford, Dec 27 2013

Keywords

Comments

Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), where p=9, r=4.

Crossrefs

Programs

  • Magma
    [1*Binomial(9*n+1, n)/(9*n+1): n in [0..30]];
  • Mathematica
    Table[4 Binomial[9 n + 4, n]/(9 n + 4), {n, 0, 30}]
  • PARI
    a(n) = 4*binomial(9*n+4,n)/(9*n+4);
    
  • PARI
    {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(9/1))^1+x*O(x^n)); polcoeff(B, n)}
    

Formula

G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, where p=9, r=4.

A234506 a(n) = binomial(9*n+3, n)/(3*n+1).

Original entry on oeis.org

1, 3, 30, 406, 6327, 107019, 1909908, 35399520, 674842149, 13147742322, 260626484118, 5239783981320, 106585537781775, 2189670831627678, 45366284782209600, 946815917066740800, 19887218367823853937, 420076689292591271325, 8917736795123409615060, 190161017612160607167948, 4071301730663135449185705
Offset: 0

Views

Author

Tim Fulford, Dec 27 2013

Keywords

Comments

Fuss-Catalan sequence is a(n,p,r) = r*binomial(n*p + r, n)/(n*p + r), where p=9, r=3.

Crossrefs

Programs

  • Magma
    [Binomial(9*n+3, n)/(3*n+1): n in [0..30]];
    
  • Mathematica
    Table[Binomial[9n+3, n]/(3n+1), {n, 0, 30}]
  • PARI
    a(n) = binomial(9*n+3,n)/(3*n+1);
    
  • PARI
    {a(n)=local(B=1); for(i=0, n, B=(1+x*B^3)^3+x*O(x^n)); polcoeff(B, n)}
    
  • Sage
    [binomial(9*n+3, n)/(3*n+1) for n in (0..30)] # G. C. Greubel, Feb 09 2021

Formula

G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, where p=9, r=3.

A234508 5*binomial(9*n+5,n)/(9*n+5).

Original entry on oeis.org

1, 5, 55, 775, 12350, 211876, 3818430, 71282640, 1366368375, 26735839650, 531838637759, 10723307329700, 218658647805780, 4501362056183300, 93426735902060000, 1952884185072496992, 41074876852203972645, 868669222741822476975, 18460669540059117038250, 394033629095915025876750, 8443512680148379948569910
Offset: 0

Views

Author

Tim Fulford, Dec 27 2013

Keywords

Comments

Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), where p=9, r=5.

Crossrefs

Programs

  • Magma
    [5*Binomial(9*n+5, n)/(9*n+5): n in [0..30]];
  • Mathematica
    Table[5 Binomial[9 n + 5, n]/(9 n + 5), {n, 0, 30}]
  • PARI
    a(n) = 5*binomial(9*n+5,n)/(9*n+5);
    
  • PARI
    {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(9/5))^5+x*O(x^n)); polcoeff(B, n)}
    

Formula

G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, where p=9, r=5.
Showing 1-10 of 12 results. Next