A154402 Inverse Moebius transform of Fredholm-Rueppel sequence, cf. A036987.
1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 3, 1, 1, 2, 1, 1, 3, 1, 1, 2, 1, 1, 2, 2, 1, 3, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 3, 1, 1, 3, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 3, 1, 2, 4, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 3, 1, 2, 2, 1, 1, 2, 1, 1, 3, 1, 1, 2, 1, 1, 3, 2, 1, 3, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 4
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537 (first 10000 terms from Robert Israel)
Crossrefs
Programs
-
Maple
N:= 200: # to get a(1)..a(N) A:= Vector(N): for k from 1 do t:= 2^k-1; if t > N then break fi; R:= [seq(i,i=t..N,t)]; A[R]:= map(`+`,A[R],1) od: convert(A,list); # Robert Israel, Jan 23 2017
-
Mathematica
Table[DivisorSum[n, 1 &, IntegerQ@ Log2[# + 1] &], {n, 105}] (* Michael De Vlieger, Jun 11 2018 *)
-
PARI
A209229(n) = (n && !bitand(n,n-1)); A036987(n) = A209229(1+n); A154402(n) = sumdiv(n,d,A036987(d)); \\ Antti Karttunen, Jun 11 2018
-
PARI
A154402(n) = { my(m=1,s=0); while(m<=n, s += !(n%m); m += (m+1)); (s); }; \\ Antti Karttunen, May 12 2022
Formula
G.f.: Sum_{k>0} x^(2^k-1)/(1-x^(2^k-1)).
From Antti Karttunen, Jun 11 2018: (Start)
a(n) = Sum_{d|n} A036987(d).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = A065442 = 1.606695... . - Amiram Eldar, Dec 31 2023
Comments