cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A266640 Reversed reduced frequency counts for A004001: a(n) = A265754(A054429(n)).

Original entry on oeis.org

1, 2, 1, 3, 2, 1, 1, 4, 3, 2, 1, 2, 1, 1, 1, 5, 4, 3, 2, 1, 3, 2, 1, 2, 1, 1, 2, 1, 1, 1, 1, 6, 5, 4, 3, 2, 1, 4, 3, 2, 1, 3, 2, 1, 2, 1, 1, 3, 2, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 7, 6, 5, 4, 3, 2, 1, 5, 4, 3, 2, 1, 4, 3, 2, 1, 3, 2, 1, 2, 1, 1, 4, 3, 2, 1, 3, 2, 1, 2, 1, 1, 3, 2, 1, 2, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Jan 22 2016

Keywords

Comments

Deleting all 1's and decrementing the remaining terms by one gives the sequence back.

Examples

			Illustration how the sequence can be constructed by concatenating the reversed reduced frequency counts R_n of each successive level n of A004001-tree:
                              1
                             / \
                            2   1
                           /|\   \
              ____________3 2 1   1
             /    /    /  | |\ \   \
    ________4  __3    2   1 2 1 1   1
   / / / / /  / /|   /|   | |\ \ \   \
  5 4 3 2 1  3 2 1  2 1   1 2 1 1 1   1
etc.
		

Crossrefs

Cf. A000079 (positions of records, where n appears for the first time).
Cf. A265754 (obtained from the mirror image of the same tree).

Programs

Formula

a(n) = A265754(A054429(n)).
Other identities. For all n >= 0:
a(2^n) = n+1.

A265332 a(n) is the index of the column in A265901 where n appears; also the index of the row in A265903 where n appears.

Original entry on oeis.org

1, 2, 1, 3, 1, 1, 2, 4, 1, 1, 1, 2, 1, 2, 3, 5, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 6, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 2, 3, 1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5, 7, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 2, 3, 1, 1, 1, 2, 1, 1, 2, 1, 2, 3, 1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4
Offset: 1

Views

Author

Antti Karttunen, Jan 09 2016

Keywords

Comments

If all 1's are deleted, the remaining terms are the sequence incremented. - after Franklin T. Adams-Watters Oct 05 2006 comment in A051135.
Ordinal transform of A162598.

Examples

			Illustration how the sequence can be constructed by concatenating the frequency counts Q_n of each successive level n of A004001-tree:
--
             1                                      Q_0 = (1)
             |
            _2__                                    Q_1 = (2)
           /    \
         _3    __4_____                             Q_2 = (1,3)
        /     /  |     \
      _5    _6  _7    __8___________                Q_3 = (1,1,2,4)
     /     /   / |   /  |  \        \
   _9    10  11 12  13  14  15___    16_________    Q_4 = (1,1,1,2,1,2,3,5)
  /     /   /  / |  /  / |   |\  \   | \  \  \  \
17    18  19 20 21 22 23 24 25 26 27 28 29 30 31 32
--
The above illustration copied from the page 229 of Kubo and Vakil paper (page 5 in PDF).
		

Crossrefs

Essentially same as A051135 apart from the initial term, which here is set as a(1)=1.
Cf. A162598 (corresponding other index).
Cf. A265754.
Cf. also A267108, A267109, A267110.

Programs

  • Mathematica
    terms = 120;
    h[1] = 1; h[2] = 1;
    h[n_] := h[n] = h[h[n - 1]] + h[n - h[n - 1]];
    seq[nmax_] := seq[nmax] = (Length /@ Split[Sort @ Array[h, nmax, 2]])[[;; terms]];
    seq[nmax = 2 terms];
    seq[nmax += terms];
    While[seq[nmax] != seq[nmax - terms], nmax += terms];
    seq[nmax] (* Jean-François Alcover, Dec 19 2021 *)
  • Scheme
    (define (A265332 n) (if (= 1 n) 1 (A051135 n)))

Formula

a(1) = 1; for n > 1, a(n) = A051135(n).

A266348 a(1) = 1; for n > 1, a(n) = A004001(n+1) - A072376(n).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 2, 1, 2, 3, 3, 4, 4, 4, 4, 1, 2, 3, 4, 4, 5, 6, 6, 7, 7, 7, 8, 8, 8, 8, 8, 1, 2, 3, 4, 5, 5, 6, 7, 8, 8, 9, 10, 10, 11, 11, 11, 12, 13, 13, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 1, 2, 3, 4, 5, 6, 6, 7, 8, 9, 10, 10, 11, 12, 13, 13, 14, 15, 15, 16, 16, 16, 17, 18, 19, 19, 20, 21, 21
Offset: 1

Views

Author

Antti Karttunen, Jan 22 2016

Keywords

Comments

When the terms are arranged as successively larger batches of 2^n, the terms A(n,k), k = 1 .. 2^n, on row n give the cumulative number of 1's encountered since the beginning of the row n of similarly organized irregular table A265754, up to and including the k-th term on that row:
1;
1, 1;
1, 2, 2, 2;
1, 2, 3, 3, 4, 4, 4, 4;
1, 2, 3, 4, 4, 5, 6, 6, 7, 7, 7, 8, 8, 8, 8, 8;
...

Crossrefs

Programs

  • Mathematica
    lim = 100; b[1] = 1; b[2] = 1; b[n_] := b[n] = b[b[n - 1]] + b[n - b[n - 1]]; s = CoefficientList[Series[1/(2 - 2 x) (2 x - x^2 + Sum[ 2^(k - 1) x^2^k, {k, Floor@ Log2@ lim}]), {x, 0, lim}], x]; {1}~Join~Table[b[n + 1] - s[[n + 1]], {n, 2, lim}] (* Michael De Vlieger, Jan 26 2016, after Robert G. Wilson v at A004001 *)
  • Scheme
    (define (A266348 n) (if (= 1 n) 1 (- (A004001 (+ 1 n)) (A072376 n))))

Formula

a(1) = 1; for n > 1, a(n) = A004001(n+1) - A072376(n) = A004001(n+1) - 2^(A000523(n)-1).

A266349 a(n) = 1 + A053644(n) - A004001(n+1) = 1 + A072376(n) - A266348(n).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 4, 3, 2, 2, 1, 1, 1, 1, 8, 7, 6, 5, 5, 4, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 16, 15, 14, 13, 12, 12, 11, 10, 9, 9, 8, 7, 7, 6, 6, 6, 5, 4, 4, 3, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 32, 31, 30, 29, 28, 27, 27, 26, 25, 24, 23, 23, 22, 21, 20, 20, 19, 18, 18, 17, 17, 17, 16, 15, 14, 14, 13, 12, 12, 11, 11, 11, 10
Offset: 1

Views

Author

Antti Karttunen, Jan 22 2016

Keywords

Comments

Used in a recursive formula of A265754.

Crossrefs

Programs

  • Mathematica
    b[1] = 1; b[2] = 1; b[n_] := b[n] = b[b[n - 1]] + b[n - b[n - 1]]; Table[1 + 2^(Ceiling@ Log2[n + 1] - 1) - b[n + 1], {n, 96}] (* Michael De Vlieger, Jan 26 2016, after Robert G. Wilson v at A004001 *)

Formula

a(n) = 1 + A053644(n) - A004001(n+1).
a(n) = 1 + A072376(n) - A266348(n).

A293959 Construct a triangle T(n,k) (0 <= k <= n) of strings of integers, where T(0,0) = {0}, T(n,n) = {n}, and otherwise T(n,k) is the concatenation of T(n-1,k-1) and T(n-1,k). The sequence is obtained by reading across the rows of the triangle, concatenating the successive strings.

Original entry on oeis.org

0, 0, 1, 0, 0, 1, 2, 0, 0, 0, 1, 0, 1, 2, 3, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 2, 0, 1, 2, 3, 4, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 2, 0, 0, 1, 0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 2, 0, 0, 0, 1, 0, 0, 1, 0, 1, 2, 0, 0, 1, 0, 1, 2, 0, 1, 2, 3, 0, 0, 1, 0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 3, 4
Offset: 0

Views

Author

N. J. A. Sloane, Nov 05 2017

Keywords

Comments

The string T(n,k) contains binomial(n,k) numbers.

Examples

			The first few rows of the triangle (where the strings T(n,k) are shown without spaces for legibility) are:
0,
0,1,
0,01,2,
0,001,012,3,
0,0001,001012,0123,4,
0,00001,0001001012,0010120123,01234,5,
...
		

Crossrefs

Subtracting 1 from each term gives A265754.
Cf. A007318.
Showing 1-5 of 5 results.