A100125 Decimal expansion of Sum_{n>0} n/(2^(n^2)).
6, 3, 0, 9, 2, 0, 5, 5, 9, 2, 5, 5, 1, 8, 5, 8, 6, 4, 7, 7, 8, 3, 2, 4, 0, 0, 3, 9, 0, 7, 9, 4, 3, 3, 7, 0, 0, 9, 2, 1, 5, 1, 4, 2, 9, 9, 2, 1, 7, 8, 7, 9, 8, 6, 8, 0, 6, 4, 4, 4, 2, 4, 8, 9, 9, 9, 8, 9, 8, 0, 8, 1, 0, 7, 8, 3, 8, 1, 7, 7, 3, 4, 7, 3, 8, 8, 2, 0, 0, 1, 9, 2, 0, 6, 4, 4, 4, 5, 2, 1
Offset: 0
Examples
0.6309205592551858647783240039079433700921514299217879868...
Links
- David H. Bailey and Richard E. Crandall, Random Generators and Normal Numbers, page 27.
Crossrefs
Cf. A066716: binary Champernowne constant.
Programs
-
Mathematica
RealDigits[N[Sum[n/(2^(n^2)), {n, 4!}], 100]][[1]] (* Arkadiusz Wesolowski, Sep 29 2011 *)
-
PARI
default(realprecision,100);sum(n=1,100,n/(2^(n^2)),0.) \\ Typo corrected. sum(n=1,100,n*1.>>(n^2)) is 25 x faster for 1000 digits. - M. F. Hasler, Mar 22 2017
Extensions
Offset corrected by Arkadiusz Wesolowski, Sep 29 2011
Comments