A100137 a(n) = Sum_{k=0..floor(n/6)} C(n-3k,3k) * 2^(n-6k).
1, 2, 4, 8, 16, 32, 65, 136, 296, 672, 1584, 3840, 9473, 23566, 58736, 146080, 361760, 891328, 2184961, 5331476, 12958684, 31400160, 75910320, 183220800, 441787201, 1064687642, 2565404524, 6181873208, 14899796416, 35922756992, 86635757825
Offset: 0
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (6,-12,8,0,0,1).
Programs
-
Mathematica
Table[Sum[Binomial[n-3k,3k]2^(n-6k),{k,0,Floor[n/6]}],{n,0,30}] (* or *) LinearRecurrence[{6,-12,8,0,0,1},{1,2,4,8,16,32},31] (* Harvey P. Dale, Mar 19 2015 *)
Formula
G.f.: (1-2x)^2/((1-2x)^3 - x^6).
a(n) = 6*a(n-1) - 12*a(n-2) + 8*a(n-3) + a(n-6).
Comments