A100151 Structured snub dodecahedral numbers.
1, 60, 286, 788, 1675, 3056, 5040, 7736, 11253, 15700, 21186, 27820, 35711, 44968, 55700, 68016, 82025, 97836, 115558, 135300, 157171, 181280, 207736, 236648, 268125, 302276, 339210, 379036, 421863, 467800, 516956, 569440, 625361, 684828, 747950, 814836, 885595
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..5000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Programs
-
Magma
[(1/6)*(109*n^3-153*n^2+50*n): n in [1..40]]; // Vincenzo Librandi, Jul 19 2011
-
Mathematica
LinearRecurrence[{4, -6, 4, -1}, {1, 60, 286, 788}, 50] (* Paolo Xausa, Aug 06 2025 *)
Formula
a(n) = (1/6)*n*(109*n^2 - 153*n + 50).
G.f.: x*(1 + 56*x + 52*x^2)/(1-x)^4. - Colin Barker, Jan 19 2012
From Elmo R. Oliveira, Aug 05 2025: (Start)
E.g.f.: exp(x)*x*(109*x^2 + 174*x + 6)/6.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n > 4. (End)