A100199 Decimal expansion of Pi^2/(12*log(2)), inverse of Levy's constant.
1, 1, 8, 6, 5, 6, 9, 1, 1, 0, 4, 1, 5, 6, 2, 5, 4, 5, 2, 8, 2, 1, 7, 2, 2, 9, 7, 5, 9, 4, 7, 2, 3, 7, 1, 2, 0, 5, 6, 8, 3, 5, 6, 5, 3, 6, 4, 7, 2, 0, 5, 4, 3, 3, 5, 9, 5, 4, 2, 5, 4, 2, 9, 8, 6, 5, 2, 8, 0, 9, 6, 3, 2, 0, 5, 6, 2, 5, 4, 4, 4, 3, 3, 0, 0, 3, 4, 8, 3, 0, 1, 1, 0, 8, 4, 8, 6, 8, 7, 5, 9, 4, 6, 6, 3
Offset: 1
Examples
1.1865691104156254528217229759472371205683565364720543359542542986528...
References
- Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.7, p. 54.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
- R. M. Corless, Continued Fractions and Chaos, Amer. Math. Monthly 99, 203-215, 1992.
- Eric Weisstein's World of Mathematics, Khinchin-Levy Constant.
- Eric Weisstein's World of Mathematics, Lévy Constant.
- Wikipedia, Lévy's constant.
Programs
-
Mathematica
RealDigits[Pi^2/(12*Log[2]), 10, 100][[1]] (* G. C. Greubel, Mar 23 2017 *)
-
PARI
Pi^2/log(4096) \\ Charles R Greathouse IV, Aug 04 2016
Formula
Equals ((Pi^2)/12)/log(2) = A072691 / A002162 = (Sum_{n>=1} ((-1)^(n+1))/n^2) / (Sum_{n>=1} ((-1)^(n+1))/n^1). - Terry D. Grant, Aug 03 2016
Equals (-1/log(2)) * Integral_{x=0..1} log(x)/(1+x) dx (from Corless, 1992). - Bernard Schott, Sep 01 2022
Comments