A100226 Triangle, read by rows, of the coefficients of [x^k] in G100225(x)^n such that the row sums are 3^n-1 for n>0, where G100225(x) is the g.f. of A100225.
1, 1, 1, 1, 2, 5, 1, 3, 9, 13, 1, 4, 14, 28, 33, 1, 5, 20, 50, 85, 81, 1, 6, 27, 80, 171, 246, 197, 1, 7, 35, 119, 301, 553, 693, 477, 1, 8, 44, 168, 486, 1064, 1724, 1912, 1153, 1, 9, 54, 228, 738, 1854, 3600, 5220, 5193, 2785, 1, 10, 65, 300, 1070, 3012, 6730, 11760
Offset: 0
Examples
Rows begin: [1], [1,1], [1,2,5], [1,3,9,13], [1,4,14,28,33], [1,5,20,50,85,81], [1,6,27,80,171,246,197], [1,7,35,119,301,553,693,477], [1,8,44,168,486,1064,1724,1912,1153],... where row sums form 3^n-1 for n>0: 3^1-1 = 1+1 3^2-1 = 1+2+5 3^3-1 = 1+3+9+13 3^4-1 = 1+4+14+28+33 3^5-1 = 1+5+20+50+85+81. The main diagonal forms A100227 = [1,1,5,13,33,81,197,477,...], where Sum_{n>=1} (A100227(n)/n)*x^n = log((1-x)/(1-2*x-x^2)).
Programs
-
PARI
T(n,k,m=3)=if(n
Formula
G.f.: A(x, y)=(1-2*x*y+3*x^2*y^2)/((1-x*y)*(1-2*x*y-x^2*y^2-x*(1-x*y))).
Comments