A100229 Triangle, read by rows, of the coefficients of [x^k] in G100228(x)^n such that the row sums are 4^n-1 for n>0, where G100228(x) is the g.f. of A100228.
1, 1, 2, 1, 4, 10, 1, 6, 21, 35, 1, 8, 36, 92, 118, 1, 10, 55, 185, 380, 392, 1, 12, 78, 322, 879, 1506, 1297, 1, 14, 105, 511, 1715, 3948, 5803, 4286, 1, 16, 136, 760, 3004, 8536, 17020, 21904, 14158, 1, 18, 171, 1077, 4878, 16344, 40395, 71109, 81387, 46763
Offset: 0
Examples
Rows begin: [1], [1,2], [1,4,10], [1,6,21,35], [1,8,36,92,118], [1,10,55,185,380,392], [1,12,78,322,879,1506,1297], [1,14,105,511,1715,3948,5803,4286], [1,16,136,760,3004,8536,17020,21904,14158],... where row sums form 4^n-1 for n>0: 4^1-1 = 1+2 = 3 4^2-1 = 1+4+10 = 15 4^3-1 = 1+6+21+35 = 63 4^4-1 = 1+8+36+92+118 = 255 4^5-1 = 1+10+55+185+380+392 = 1023. The main diagonal forms A100230 = [1,2,10,35,118,392,1297,...], where Sum_{n>=1} A100230(n)/n*x^n = log((1-x)/(1-3*x-x^2)).
Programs
-
PARI
T(n,k,m=4)=if(n
Formula
G.f.: A(x, y)=(1-2*x*y+4*x^2*y^2)/((1-x*y)*(1-3*x*y-x^2*y^2-x*(1-x*y))).
Comments