cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100254 Let j be the smallest integer for which 1 + (1+1*n) + (1+2*n) + ... + (1+j*n) = k^2 = s. Then a(n)=j; if no such j exists, then a(n)=0.

Original entry on oeis.org

7, 1, 80, 24, 5, 8, 1, 0, 6, 3, 2, 8, 21, 1, 48, 3, 7, 0, 16, 8, 80, 4, 1, 24, 45, 2, 9, 120, 5, 8, 17, 3, 30, 1, 10, 168, 6, 5, 1680, 48, 7, 3, 4960, 11, 224, 7, 1, 15, 31, 0, 48, 24, 16, 12, 288, 8, 48, 6, 26, 80, 117, 1, 136160, 195, 13, 3, 9, 840, 1520, 24, 49, 8, 70, 2, 1680
Offset: 1

Views

Author

Charlie Marion, Nov 21 2004

Keywords

Comments

Basis for sequence is shortest arithmetic series with initial term 1 and difference n that sums to a perfect square.

Examples

			a(3)=80 since 1 + 4 + 7 +...+ (1+80*3) = 99^2 = 9801 and no other arithmetic series with initial term 1, difference 3 and fewer terms sums to a perfect square.
		

Programs

  • Mathematica
    a[n_] := Block[{k = 1}, While[ !IntegerQ[ Sqrt[(k + 1)(1 + k*n/2)]], k++ ]; k]; a[18] = a[50] = 0; Table[ a[n], {n, 75}] (* Robert G. Wilson v, Nov 27 2004 *)

Formula

1 + (1+1*n) + (1+2*n) + ... + (1+a(n)*n) = 1 + (1+1*n) + (1+2*n) + ... + A100253(n) = A100251(n)^2 = A100252(n).

Extensions

More terms from Robert G. Wilson v, Nov 27 2004