cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100255 Squares of pentagonal numbers: a(n) = (1/4)*n^2*(3*n-1)^2.

Original entry on oeis.org

0, 1, 25, 144, 484, 1225, 2601, 4900, 8464, 13689, 21025, 30976, 44100, 61009, 82369, 108900, 141376, 180625, 227529, 283024, 348100, 423801, 511225, 611524, 725904, 855625, 1002001, 1166400, 1350244, 1555009, 1782225, 2033476
Offset: 0

Views

Author

Ralf Stephan, Nov 13 2004

Keywords

Comments

More generally, the ordinary generating function for the squares of k-gonal numbers is x*(1 + (k^2 - 5)*x + (4*k^2 - 18*k + 19)*x^2 + (k - 3)^2*x^3)/(1 - x)^5. - Ilya Gutkovskiy, Apr 13 2016

Crossrefs

Cf. similar sequences of the squares of k-gonal numbers: A000537 (k = 3), A000583 (k = 4), this sequence (k = 5).

Programs

  • Mathematica
    LinearRecurrence[{5, -10, 10, -5, 1}, {0, 1, 25, 144, 484}, 32] (* Ilya Gutkovskiy, Apr 13 2016 *)
    Table[(1/4) n^2 (3 n - 1)^2, {n, 0, 31}] (* Michael De Vlieger, Apr 13 2016 *)
  • PARI
    a(n) = (1/4)*n^2*(3*n-1)^2 \\ Altug Alkan, Apr 13 2016

Formula

a(n) = A000326(n)^2.
G.f.: x*(1+20*x+29*x^2+4*x^3)/(1-x)^5. - Colin Barker, Feb 14 2012
From Ilya Gutkovskiy, Apr 13 2016: (Start)
E.g.f.: x*(4 + 46*x + 48*x^2 + 9*x^3)*exp(x)/4.
a(n) = 5*a(n-1) - 10*(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). (End)
Sum_{n>=1} 1/a(n) = 2*Pi^2/3 + 4*sqrt(3)*Pi - 36*log(3) + 4*psi_1(2/3), where psi_1 is the trigamma function. - Amiram Eldar, Apr 04 2025