A100258 Triangle of coefficients of normalized Legendre polynomials, with increasing exponents.
1, 0, 1, -1, 0, 3, 0, -3, 0, 5, 3, 0, -30, 0, 35, 0, 15, 0, -70, 0, 63, -5, 0, 105, 0, -315, 0, 231, 0, -35, 0, 315, 0, -693, 0, 429, 35, 0, -1260, 0, 6930, 0, -12012, 0, 6435, 0, 315, 0, -4620, 0, 18018, 0, -25740, 0, 12155, -63, 0, 3465, 0, -30030, 0, 90090, 0, -109395, 0, 46189
Offset: 0
Examples
Triangle begins: 1; 0, 1; -1, 0, 3; 0, -3, 0, 5; 3, 0, -30, 0, 35; 0, 15, 0, -70, 0, 63; -5, 0, 105, 0, -315, 0, 231; 0, -35, 0, 315, 0, -693, 0, 429; 35, 0, -1260, 0, 6930, 0, -12012, 0, 6435; ...
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 798.
Links
- T. D. Noe, Rows n=0..100 of triangle, flattened
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- J. Allouche and G. Skordev, Schur congruences, Carlitz sequences of polynomials and automaticity, Discrete Mathematics, Vol. 214, Issue 1-3, 21 March 2000, p. 21-49.
- Tom Copeland, The Elliptic Lie Triad: Riccati and KdV Equations, Infinigens, and Elliptic Genera
- H. N. Laden, An historical, and critical development of the theory of Legendre polynomials before 1900, Master of Arts Thesis, University of Maryland 1938.
- Shi-Mei Ma, On gamma-vectors and the derivatives of the tangent and secant functions, arXiv:1304.6654 [math.CO], 2013.
- MathOverflow, Geometric picture of invariant differential of an elliptic curve, Dec 4 2011.
Crossrefs
Programs
-
Mathematica
row[n_] := CoefficientList[ LegendreP[n, x], x]*2^IntegerExponent[n!, 2]; Table[row[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Jan 15 2015 *)
-
PARI
a(k,n)=polcoeff(pollegendre(k,x),n)*2^valuation(k!,2)
-
Python
from mpmath import * mp.dps=20 def a007814(n): return 1 + bin(n - 1)[2:].count('1') - bin(n)[2:].count('1') for n in range(11): y=2**sum(a007814(i) for i in range(2, n+1)) l=chop(taylor(lambda x: legendre(n, x), 0, n)) print([int(i*y) for i in l]) # Indranil Ghosh, Jul 02 2017
Formula
The n-th normalized Legendre polynomial is generated by 2^(-n-a(n)) (d/dx)^n (x^2-1)^n / n! with a(n) = A005187(n/2) for n even and a(n) = A005187((n-1)/2) for n odd. The non-normalized polynomials have the o.g.f. 1 / sqrt(1 - 2xz + z^2). - Tom Copeland, Feb 07 2016
The consecutive nonzero entries in the m-th row are, in order, (c+b)!/(c!(m-b)!(2b-m)!*A048896(m-1)) with sign (-1)^b where c = m/2-1, m/2, m/2+1, ..., (m-1) and b = c+1 if m is even and sign (-1)^c with c = (m-1)/2, (m-1)/2+1, (m-1)/2+2, ..., (m-1) with b = c+1 if m is odd. For the 9th row the 5 consecutive nonzero entries are 315, -4620, 18018, -25740, 12155 given by c = 4,5,6,7,8 and b = 5,6,7,8,9. - Richard Turk, Aug 22 2017
Comments