cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A331525 a(n) is the least positive k such that A100272(n) - k^2 is a fifth power.

Original entry on oeis.org

1, 2, 4, 6, 3, 10, 9, 14, 15, 8, 20, 14, 16, 24, 20, 26, 22, 27, 26, 3, 5, 13, 15, 36, 34, 23, 40, 27, 33, 44, 37, 51, 54, 45, 56, 18, 58, 24, 53, 63, 55, 57, 64, 66, 36, 69, 42, 63, 74, 75, 73, 82, 84, 66, 86, 90, 93, 92, 31, 94, 35, 78, 99, 49, 84, 100, 97
Offset: 1

Views

Author

Rémy Sigrist, Jan 19 2020

Keywords

Examples

			The first terms, alongside A100272(n), are:
  n   a(n)  A100272(n)
  --  ----  ----------------
   1     1    2 =  1^2 + 1^5
   2     2    5 =  2^2 + 1^5
   3     4   17 =  4^2 + 1^5
   4     6   37 =  6^2 + 1^5
   5     3   41 =  3^2 + 2^5
   6    10  101 = 10^2 + 1^5
   7     9  113 =  9^2 + 2^5
   8    14  197 = 14^2 + 1^5
   9    15  257 = 15^2 + 2^5
  10     8  307 =  8^2 + 3^5
		

Crossrefs

See A331435 for similar sequences.

Programs

  • PARI
    See Links section.

A100292 Numbers of the form a^5 + b^2 with a, b > 0.

Original entry on oeis.org

2, 5, 10, 17, 26, 33, 36, 37, 41, 48, 50, 57, 65, 68, 81, 82, 96, 101, 113, 122, 132, 145, 153, 170, 176, 197, 201, 226, 228, 244, 247, 252, 257, 259, 268, 279, 288, 290, 292, 307, 321, 324, 325, 343, 356, 362, 364, 387, 393, 401, 412, 432, 439, 442, 468, 473
Offset: 1

Views

Author

T. D. Noe, Nov 18 2004

Keywords

Crossrefs

Cf. A100272 (primes of the form a^5 + b^2).
Cf. A000404 (a^2 + b^2), A055394 (a^2 + b^3), A111925 (a^2 + b^4), A100291 (a^4 + b^3), A100292 (a^5 + b^2), A100293 (a^5 + b^3), A100294 (a^5 + b^4), A303372 (a^2 + b^6), A303373 (a^3 + b^6), A303374 (a^4 + b^6), A303375 (a^5 + b^6).

Programs

  • Mathematica
    lst={}; Do[p=a^5+b^2; If[p<1000, AppendTo[lst, p]], {a, 16}, {b, 1024}]; Union[lst]
  • PARI
    is(n, m=5)=for(a=1, sqrtnint(n-1, m), issquare(n-a^m) && return(a)) \\ M. F. Hasler, Apr 25 2018
Showing 1-2 of 2 results.