cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100335 An inverse Catalan transform of J(2n).

Original entry on oeis.org

0, 1, 4, 11, 27, 64, 149, 341, 768, 1707, 3755, 8192, 17749, 38229, 81920, 174763, 371371, 786432, 1660245, 3495253, 7340032, 15379115, 32156331, 67108864, 139810133, 290805077, 603979776, 1252698795, 2594876075, 5368709120
Offset: 0

Views

Author

Paul Barry, Nov 17 2004

Keywords

Comments

The g.f. is obtained from that of A002450 through the mapping g(x) -> g(x*(1-x)). A002450 may be retrieved through the mapping g(x) -> g(x*c(x)), where c(x) is the g.f. of A000108.

Crossrefs

Programs

  • Magma
    I:=[0,1,4,11]; [n le 4 select I[n] else 5*Self(n-1) -9*Self(n-2) +8*Self(n-3) -4*Self(n-4): n in [1..41]]; // G. C. Greubel, Jan 24 2023
    
  • Mathematica
    LinearRecurrence[{5,-9,8,-4}, {0,1,4,11}, 41] (* G. C. Greubel, Jan 24 2023 *)
  • SageMath
    def A100335(n): return (1/3)*((n+1)*2^n - chebyshev_U(n,1/2))
    [A100335(n) for n in range(41)] # G. C. Greubel, Jan 24 2023

Formula

G.f.: x*(1-x)/(1 - 5*x + 9*x^2 - 8*x^3 + 4*x^4).
a(n) = 5*a(n-1) - 9*a(n-2) + 8*a(n-3) - 4*a(n-4).
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k, k)*(-1)^k*(4^(n-k) - 1)/3.
a(n) = (1/3)*((n+1)*2^n - A010892(n)). - Ralf Stephan, May 15 2007
Binomial transform of A042965: (1, 3, 4, 5, 7, 8, 9, 11, 12, 13, ...), also row sums of triangle A133110. - Gary W. Adamson, Sep 12 2007
a(n) = Sum_{k=0..n} A109466(n,k)*A002450(k). - Philippe Deléham, Oct 30 2008