A100384 a(n) = the smallest number x >= 2 such that for m = x to x + n - 1, A006530(m) increases.
2, 2, 8, 8, 90, 168, 9352, 46189, 721970, 721970, 6449639, 565062156, 11336460025, 37151747513, 256994754033
Offset: 1
Examples
a(5)=90 because the largest prime factors of 90,91,92,93,94 are 5,13,23,31,47.
Programs
-
Python
from sympy import factorint def A100384(n): k, a = 2, [max(factorint(m+2)) for m in range(n)] while True: for i in range(1, n): if a[i-1] >= a[i]: break else: return k a = a[i:] + [max(factorint(k+j+n)) for j in range(i)] k += i # Chai Wah Wu, Jul 24 2017
Extensions
Edited by Don Reble, Jun 13 2007
a(13)-a(15) from Donovan Johnson, Oct 24 2009
Name clarified by Peter Munn, Dec 05 2022
Comments