cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A358890 a(n) is the first term of the first maximal run of n consecutive numbers with increasing greatest prime factors.

Original entry on oeis.org

14, 4, 1, 8, 90, 168, 9352, 46189, 2515371, 721970, 6449639, 565062156, 11336460025, 37151747513, 256994754033, 14037913234203
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 10 2003

Keywords

Comments

a(16) > 10^13. - Giovanni Resta, Jul 25 2013
The convention gpf(1) = A006530(1) = 1 is used (otherwise we would have a(2) = 2 and a(3) = 24). - Pontus von Brömssen, Dec 05 2022
a(17) > 10^14. - Martin Ehrenstein, Dec 10 2022

Examples

			a(7) = 9352 because the first sequence of seven consecutive numbers with increasing greatest prime factors is 9352=167*7*2^3, 9353=199*47, 9354=1559*3*2, 9355=1871*5, 9356=2339*2^2, 9357=3119*3, and 9358=4679*2. [Corrected by _Jon E. Schoenfield_, Sep 21 2022]
		

Crossrefs

Cf. A006530, A070087, A079748, A079749 (erroneous version), A100384.

Programs

  • Maple
    V:= Vector(11): count:= 0:
    a:= 1: m:= 1: w:= 1:
    for k from 2 while count < 11 do
      v:= max(numtheory:-factorset(k));
      if v > m then m:= v
      else
        if V[k-a] = 0 then V[k-a]:= a; count:= count+1; fi;
        a:= k; m:= v;
      fi
    od:
    convert(V,list); # Robert Israel, Dec 05 2022
  • Python
    from sympy import factorint
    def A358890(n):
        m = 1
        gpf1 = 1
        k = 1
        while 1:
            while 1:
                gpf2 = max(factorint(m+k))
                if gpf2 < gpf1: break
                gpf1 = gpf2
                k += 1
            if k == n: return m
            m += k
            gpf1 = gpf2
            k = 1 # Pontus von Brömssen, Dec 05 2022

Formula

A079748(a(n)) = n-1.
From Pontus von Brömssen, Dec 05 2022: (Start)
A079748(a(n)-1) = 0 for n != 3.
For n != 3, a(n) = A070087(m)+1, where m is the smallest positive integer such that A070087(m+1) - A070087(m) = n.
(End)

Extensions

More terms from Don Reble, Jan 17 2003
Corrected by Jud McCranie, Feb 11 2003
a(14)-a(15) from Giovanni Resta, Jul 25 2013
Name edited, a(1) and a(2) corrected by Pontus von Brömssen, Dec 05 2022
a(16) from Martin Ehrenstein, Dec 07 2022

A100376 a(n) is the largest number x such that for m=n to n+x-1, A006530(m) increases.

Original entry on oeis.org

2, 1, 2, 1, 2, 1, 4, 3, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 4, 3, 2, 1, 3, 2, 1, 3, 2, 1, 2, 1, 3, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 3, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 4, 3, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 3, 2, 1, 1, 3, 2, 1, 3, 2, 1, 1, 2, 1, 5, 4, 3, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 3
Offset: 2

Views

Author

Labos Elemer, Dec 09 2004

Keywords

Comments

A006530(m) is the greatest prime factor (gpf) of m.
If p is an odd prime, a(p)=1, because the largest prime factor of p+1 is smaller than p.

Examples

			a(8)=4 because the largest prime factors of 8,9,10,11 are 2,3,5,11; but gpf(12)=3.
From _Michael De Vlieger_, Jul 30 2017: (Start)
Value  First position
   1         3
   2         2
   3         9
   4         8
   5        90
   6       168
   7      9352
   8     46189
   9    721971
  10    721970
(End)
		

Crossrefs

Programs

  • Mathematica
    With[{s = Differences@ Array[FactorInteger[#][[-1, 1]] &, 115]}, Table[1 + LengthWhile[Drop[s, n], # > 0 &], {n, Length@ s - 10}]] (* Michael De Vlieger, Jul 30 2017 *)
  • PARI
    a(n) = {m = n+1; gpf = vecmax(factor(n)[,1]); while((ngpf=vecmax(factor(m)[,1])) > gpf, m++; gpf = ngpf;); m - n;} \\ Michel Marcus, Jul 25 2017

Extensions

Edited by Don Reble, Jun 13 2007

A100385 a(n) is the least number x >= 2 such that for m=x to x+n-1, A006530(m) decreases.

Original entry on oeis.org

2, 3, 13, 13, 491, 1851, 12721, 12721, 109453, 586951, 120797465, 624141002, 4044619541, 267793490438, 315400191511, 1285600699441
Offset: 1

Views

Author

Labos Elemer, Dec 09 2004

Keywords

Comments

A006530(m) is the largest prime factor of m.
a(15) > 3*10^11. - Donovan Johnson, Oct 24 2009
a(17) > 7*10^12. - Giovanni Resta, May 04 2017

Examples

			a(5)=491 because the largest prime factors of 491,492,493,494,495 are 491,41,29,19,11.
		

Crossrefs

Programs

  • Mathematica
    Function[s, Prepend[Reverse@ FoldList[If[#2 > #1, #1, #2] &, Reverse@ #], 2] &@ Map[Function[k, First@ SelectFirst[s, And[Sign@ First@ # == 1, Length@ # == k] &]], Range[Max@ Map[Length, s]]]]@ SplitBy[Flatten[ Partition[Array[{#, FactorInteger[#][[-1, 1]]} &, 10^6], 2, 1] /. {{n_, a_}, {, b}} /; n > 0 :> -n Sign[Differences@ {a, b}]], Sign] (* Michael De Vlieger, May 04 2017, Version 10.2 *)

Formula

a(n) = A070089(x)+1, where x is the smallest positive integer such that A070089(x+1)-A070089(x) >= n. - Pontus von Brömssen, Nov 09 2022

Extensions

Edited by Don Reble, Jun 13 2007
a(14) from Donovan Johnson, Oct 24 2009
a(15)-a(16) from Giovanni Resta, May 04 2017

A100383 Numbers k such that gpf(k) < gpf(k+1) < ... < gpf(k+9), where gpf(x) = A006530(x), the greatest prime factor of x. Numbers initiating an uphill gpf run of length 10.

Original entry on oeis.org

721970, 1091150, 6449639, 6449640, 10780550, 12161824, 15571630, 17332430, 23189750, 24901256, 28262037, 30275508, 30814114, 32184457, 32608598, 35323087, 35725704, 38265227, 38896955, 69845438, 71040720, 74345936, 79910528, 85293163, 111082114
Offset: 1

Views

Author

Labos Elemer, Dec 09 2004

Keywords

Comments

Analogous chains of length 3 (see A071869) are infinite as shown by Erdős and Pomerance (1978). What is true for longer successions of length=4,5,...?

Examples

			n = 85293163: the corresponding uphill run of GPFs is (739, 5197, 6311, 7457, 8537, 1776941, 6561013, 8529317, 9477019, 21323293).
		

Crossrefs

Showing 1-4 of 4 results.