cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A100384 a(n) = the smallest number x >= 2 such that for m = x to x + n - 1, A006530(m) increases.

Original entry on oeis.org

2, 2, 8, 8, 90, 168, 9352, 46189, 721970, 721970, 6449639, 565062156, 11336460025, 37151747513, 256994754033
Offset: 1

Views

Author

Labos Elemer, Dec 09 2004

Keywords

Comments

A006530(m) is the largest prime factor of m.
a(16) > 3*10^11. - Donovan Johnson, Oct 24 2009
a(16) > 10^13. - Giovanni Resta, Jul 25 2013

Examples

			a(5)=90 because the largest prime factors of 90,91,92,93,94 are 5,13,23,31,47.
		

Crossrefs

Programs

  • Python
    from sympy import factorint
    def A100384(n):
        k, a = 2, [max(factorint(m+2)) for m in range(n)]
        while True:
            for i in range(1, n):
                if a[i-1] >= a[i]:
                    break
            else:
                return k
            a = a[i:] + [max(factorint(k+j+n)) for j in range(i)]
            k += i # Chai Wah Wu, Jul 24 2017

Extensions

Edited by Don Reble, Jun 13 2007
a(13)-a(15) from Donovan Johnson, Oct 24 2009
Name clarified by Peter Munn, Dec 05 2022

A100383 Numbers k such that gpf(k) < gpf(k+1) < ... < gpf(k+9), where gpf(x) = A006530(x), the greatest prime factor of x. Numbers initiating an uphill gpf run of length 10.

Original entry on oeis.org

721970, 1091150, 6449639, 6449640, 10780550, 12161824, 15571630, 17332430, 23189750, 24901256, 28262037, 30275508, 30814114, 32184457, 32608598, 35323087, 35725704, 38265227, 38896955, 69845438, 71040720, 74345936, 79910528, 85293163, 111082114
Offset: 1

Views

Author

Labos Elemer, Dec 09 2004

Keywords

Comments

Analogous chains of length 3 (see A071869) are infinite as shown by Erdős and Pomerance (1978). What is true for longer successions of length=4,5,...?

Examples

			n = 85293163: the corresponding uphill run of GPFs is (739, 5197, 6311, 7457, 8537, 1776941, 6561013, 8529317, 9477019, 21323293).
		

Crossrefs

A100387 a(n) is the largest number x such that for m=n to n+x-1, A006530(m) decreases.

Original entry on oeis.org

1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 4, 3, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 3, 2, 1, 4, 3, 2, 1, 2, 1, 3, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 4, 3, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 2, 1, 2, 1, 1, 3, 2, 1, 1, 2, 1, 1, 3, 2, 1, 2, 1, 1, 1, 1, 3, 2, 1, 2, 1, 2, 1, 2, 1, 3, 2, 1
Offset: 2

Views

Author

Labos Elemer, Dec 10 2004

Keywords

Comments

A006530(m) is the largest prime factor of m.

Examples

			a(13)=4 because the largest prime factors of 13,14,15,16 are 13,7,5,2; but A006530(17)=17.
		

Crossrefs

Programs

  • Mathematica
    <
    				

Formula

From Pontus von Brömssen, Nov 09 2022: (Start)
a(n) = 1 if and only if n >= 2 and n is a term of A070089.
If a(n) > 1 then a(n) = a(n+1)+1.
(End)

Extensions

Edited by Don Reble, Jun 13 2007
Showing 1-3 of 3 results.