A100387 a(n) is the largest number x such that for m=n to n+x-1, A006530(m) decreases.
1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 4, 3, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 3, 2, 1, 4, 3, 2, 1, 2, 1, 3, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 4, 3, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 2, 1, 2, 1, 1, 3, 2, 1, 1, 2, 1, 1, 3, 2, 1, 2, 1, 1, 1, 1, 3, 2, 1, 2, 1, 2, 1, 2, 1, 3, 2, 1
Offset: 2
Keywords
Examples
a(13)=4 because the largest prime factors of 13,14,15,16 are 13,7,5,2; but A006530(17)=17.
Programs
-
Mathematica
<
Formula
From Pontus von Brömssen, Nov 09 2022: (Start)
a(n) = 1 if and only if n >= 2 and n is a term of A070089.
If a(n) > 1 then a(n) = a(n+1)+1.
(End)
Extensions
Edited by Don Reble, Jun 13 2007
Comments